|
See also: Google scholar profile.
Preprints:
-
Y. Xie and X. Cheng.
"Flow-based generative models as iterative algorithms in probability space."
(Tutorial paper)
[arXiv: 2502.13394]
-
X. Cheng, T. Gong, Y. Xie.
"Point processes with event time uncertainty."
[arXiv: 2411.02694]
-
C. Xu, X. Cheng, Y. Xie.
"Local Flow Matching generative models."
[arXiv: 2410.02548]
-
V. Purohit, M. Repasky, J. Lu, Q. Qiu, Y. Xie, X. Cheng.
"Posterior sampling via Langevin dynamics based on generative priors."
[arXiv: 2410.02078]
-
T. Tang, N. Wu, X. Cheng, D. Dunson.
"Adaptive Bayesian regression on data with low intrinsic dimensionality."
[arXiv: 2407.09286]
-
V. Khurana, X. Cheng, A. Cloninger.
“Training guarantees of neural network classification two-sample tests by kernel analysis.”
[arXiv: 2407.04806]
-
Z. Dong, M. Repasky, X. Cheng, and Y. Xie. “Deep graph kernel point processes.”
[arXiv: 2306.11313]
-
Y. Tan, L. Xie, and X. Cheng.
“Neural differential Recurrent Neural Network with adaptive time steps.”
[arXiv: 2306.01674]
-
C. Xu, X. Cheng, and Y. Xie.
"An alternative approach to train neural networks using monotone variational inequality."
[arXiv: 2202.08876]
[Code]
-
J. Zhou, S. Huestis-Mitchell, X. Cheng, Y. Xie.
“Crime hot-spot modeling via topic modeling and relative density estimation.”
[arXiv: 2202.04176]
-
Z. Wang, X. Cheng, G. Sapiro, and Q. Qiu.
“ACDC: Weight sharing in atom-coefficient decomposed convolution.”
[arXiv: 2009.02386]
-
U. Shaham, J. Garritano, Y. Yamada, E. Weinberger,
A. Cloninger, X. Cheng, K. Stanton, and Y. Kluger.
“Defending against adversarial images using basis functions transformations.”
[arXiv: 1803.10840]
Journal publications:
-
X. Cheng and B. Landa.
“Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise."
Information and Inference: A Journal of the IMA (2024).
[Abstract]
[arXiv: 2206.11386]
[Code]
-
E. Rosen, X. Cheng, Y. Shkolnisky.
"The G-invariant graph Laplacian part II: Diffusion maps."
Applied and Computational Harmonic Analysis (2024).
[Abstract]
[arXiv: 2306.07350]
-
X. Cheng, J. Lu, Y. Tan, Y. Xie.
“Convergence of flow-based generative models via proximal gradient descent in Wasserstein space.”
IEEE Transactions on Information Theory (2024).
[Abstract]
[arXiv: 2310.17582]
[Code]
-
X. Cheng and Y. Xie.
“Kernel two-sample tests for manifold data.”
Bernoulli Journal (2024).
[Abstract]
[arXiv: 2105.03425]
[Code]
-
R. Qu, X. Cheng, E. Sefik,
J.S. Stanley, B. Landa, F. Strino, S. Platt, J. Garritano, I. Odell,
R. Coifman, R.A. Flavell, P. Myung, Y. Kluger.
"Gene trajectory inference for single-cell data by optimal transport metrics."
Nature Biotechnology (2024).
[Abstract]
[bioRxiv: 2022.07.08.499404v3]
[Code]
-
E. Rosen, P. Hoyos, X. Cheng, J. Kileel, Y. Shkolnisky.
"The G-invariant graph Laplacian Part I: Convergence rate and eigendecomposition."
Applied and Computational Harmonic Analysis (2024).
[Abstract]
[arXiv: 2303.17001]
Original name: “The G-invariant graph Laplacian”.
-
C. Xu, J. Lee, X. Cheng, Y. Xie.
"Flow-based Distributionally Robust Optimization."
IEEE Journal on Selected Areas in Information Theory (JSAIT) (2024).
[Abstract]
[arXiv: 2310.19253]
[Code]
-
M. Repasky, X. Cheng, and Y Xie.
“Neural Stein critics with staged L2-regularization.”
IEEE Transactions on Information Theory (2023).
[Abstract]
[arXiv: 2207.03406]
[Code].
Short version:
"Stage-regularized neural Stein critics for testing Goodness-of-fit of generative models" (ICASSP 2024).
[Abstract]
-
B. Landa and X. Cheng.
“Robust inference of manifold density and geometry by doubly stochastic scaling.”
SIAM Journal on Mathematics of Data Science (SIMODS) (2023).
[Abstract]
[arXiv: 2209.08004]
-
C. Xu, X. Cheng, and Y. Xie.
“Invertible neural networks for graph prediction.”
IEEE Journal on Selected Areas in Information Theory (JSAIT) (2022).
[Abstract]
[arXiv: 2206.01163]
[Code]
-
Y. Tan, Y. Zhang, X. Cheng, and X.-H. Zhou.
"Statistical inference using GLEaM model with spatial heterogeneity and correlation between regions".
Scientific Reports (2022).
[Abstract]
[medRxiv: 2022.01.01.21268139]
[Code]
-
X. Cheng and N. Wu.
"Eigen-convergence of Gaussian kernelized graph Laplacian by manifold heat interpolation".
Applied and Computational Harmonic Analysis, 61, 132-190 (2022).
[Abstract]
[arXiv: 2101.09875]
[Code]
-
X. Cheng and A. Cloninger.
"Classification logit two-sample testing by neural networks for differentiating near manifold densities.''
IEEE Transactions on Information Theory (2022).
[Abstract]
[arXiv: 1909.11298]
[Code]
Original name: "Classification logit two-sample testing by neural networks".
-
W. Zhu, Q. Qiu, R. Calderbank, G. Sapiro, and X. Cheng.
"Scaling-translation-equivariant networks with decomposed convolutional filters".
Journal of Machine Learning Research (2022).
[Abstract]
[arXiv: 1909.11193]
-
X. Cheng and H.-T. Wu.
"Convergence of graph Laplacian with kNN self-tuned kernels".
Information and Inference: A Journal of the IMA (2021).
[Abstract]
[arXiv: 2011.01479]
-
J. Zhao, A. Jaffe, H. Li, O. Lindenbaum, E. Sefik, R. Jackson, X. Cheng, R. Flavell, and Y. Kluger.
"Detection of differentially abundant cell subpopulations in scRNA-seq data".
Proceedings of the National Academy of Sciences 118, no. 22 (2021).
[Abstract]
[bioRxiv: 10.1101/711929v3]
-
Y. Li, X. Cheng, and J. Lu.
"Butterfly-net: optimal function representation based on convolutional neural networks".
Communications in Computational Physics (2020).
[Abstract]
[arXiv: 1805.07451]
-
H. N. Mhaskar, A. Cloninger, and X. Cheng.
"A witness function based construction of discriminative models using Hermite polynomials".
Frontiers in Applied Mathematics and Statistics, section Mathematics of Computation and Data Science (2020).
[Abstract]
[arXiv: 1901.02975]
-
X. Cheng and G. Mishne.
"Spectral embedding norm: looking deep into the spectrum of the graph Laplacian".
SIAM Journal on Imaging Sciences (2020).
[Abstract]
[arXiv: 1810.10695]
[Code]
-
R. Alaifari, X. Cheng, L. B. Pierce, and S. Steinerberger.
"On matrix rearrangement inequalities".
Proceedings of the AMS (2020).
[Abstract]
[arXiv: 1904.05239]
-
X. Cheng, A. Cloninger, and R. R. Coifman.
"Two-sample statistics based on anisotropic kernels".
Information and Inference: A Journal of the IMA (2019).
[Abstract]
[arXiv:1709.05006]
-
X. Cheng, M. Rachh, and S. Steinerberger.
"On the diffusion geometry of graph Laplacians and applications".
Applied and Computational Harmonic Analysis ,
46(3), 674-688 (2019).
[Abstract]
[arXiv:1611.03033]
-
X. Cheng, G. Mishne, and S. Steinerberger.
"The geometry of nodal sets and outlier detection".
Journal of Number Theory (2017).
[Abstract]
[arXiv:1706.01362]
-
J. Lu, Y. Lu, X. Wang, X. Li, G.C. Linderman, C. Wu, X. Cheng, L. Mu, H. Zhang, J. Liu, M. Su, H. Zhao, E.S. Spatz,
J.A. Spertus, F.A. Masoudi, H.M. Krumholz, and L. Jiang.
"Prevalence, awareness, treatment, and control of hypertension in China:
data from 1.7 million adults in a population-based screening study
(China PEACE Million Persons Project)".
The Lancet, 390 (10112), 2549-2558 (2017).
[Abstract]
-
X. Cheng, X. Chen, and S. Mallat.
"Deep Haar scattering networks".
Information and Inference: A Journal of the IMA (2016).
[Abstract] [PDF]
-
G. Pragier, I. Greenberg, X. Cheng, and Y. Shkolnisky.
"A graph partitioning approach to simultaneous angular reconstitution".
IEEE Transactions on Computational Imaging (2016).
[Abstract]
[PDF]
-
T. Zhang, X. Cheng, and A. Singer.
"Marchenko-Pastur law for Tyler's M-estimators".
Journal of Multivariate Analysis, 149, 114-123 (2016).
[Abstract]
[PDF]
-
N. Boumal and X. Cheng.
"Concentration of the Kirchhoff index for Erdos-Rényi graphs".
System and Control Letters, 74, 74-80 (2014).
[Abstract]
[PDF]
-
X. Cheng and A. Singer.
"The spectrum of high-dimensional random inner-product matrices".
Random Matrices: Theory and Applications, 02, 04 (2013).
[Abstract]
[PDF]
-
W. E, X. Zhou, and X. Cheng.
"Subcritical bifurcation in spatially extended systems".
Nonlinearity, 25, 761 (2012).
[PDF]
-
X. Cheng, L. Lin, W. E, P. Zhang, and A.C. Shi.
"Nucleation of ordered phases in block copolymers".
Physical Review Letters, 104, 148301 (2010).
[PDF]
-
L. Lin, X. Cheng, W. E, A.-C. Shi, and P. Zhang.
"A numerical method for the study of nucleation of ordered phases".
Journal of Computational Physics, 229, 1797 (2010).
[PDF]
Conference publications:
-
C. Xu, X. Cheng, and Y. Xie.
“Computing high-dimensional optimal transport by flow neural networks.”
The 28th International Conference on Artificial Intelligence and Statistics (AISTATS 2025).
[Abstract]
[arXiv: 2305.11857]
[Code]
-
C. Xu, X. Cheng, and Y. Xie.
“Normalizing flow neural networks by JKO scheme.”
NeurIPS 2023 (spotlight).
[Abstract]
[arXiv: 2212.14424]
[Code]
-
Z. Dong, X. Cheng, and Y. Xie.
“Spatio-temporal point processes with deep non-stationary kernels.”
The 11th International Conference on Learning Representations (ICLR 2023).
[Abstract]
[arXiv: 2211.11179]
-
J. Lee, Y. Xie, and X. Cheng.
“Training neural networks for sequential change-point detection.”
2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023).
[Abstract]
[arXiv: 2210.17312]
-
Z. Chen, Y. Li, and X. Cheng.
"SpecNet2: Orthogonalization-free spectral embedding by neural networks."
The Third Mathematical and Scientific Machine Learning Conference (MSML 2022).
[Abstract]
[arXiv: 2206.06644]
[Code]
-
S. Zhu, H. Wang, Z. Dong, X. Cheng, and Y. Xie.
"Neural spectral marked point processes".
The 10th International Conference on Learning Representations (ICLR 2022).
[Abstract]
[arXiv: 2106.10773]
[Code]
-
X. Cheng and Y. Xie.
"Neural tangent kernel maximum mean discrepancy".
The 35th Conference on Neural Information Processing Systems (NeurIPS 2021).
[Abstract]
[arXiv: 2106.03227]
[Code]
-
Z. Miao, Z. Wang, X. Cheng, and Q. Qiu.
"Spatiotemporal joint filter decomposition in 3D convolutional neural networks".
The 35th Conference on Neural Information Processing Systems (NeurIPS 2021).
[Abstract]
-
Y. Zhang, X. Cheng, G. Reeves.
"Convergence of Gaussian-smoothed optimal transport distance with sub-gamma distributions and dependent samples".
The 24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021).
[Abstract]
[arXiv: 2103.00394]
-
X. Cheng, Z. Miao, and Q. Qiu.
"Graph convolution with low-rank learnable local filters".
International Conference on Learning Representations (ICLR 2021) (spotlight).
[Abstract]
[arXiv: 2008.01818v2]
[Code]
-
Z. Wang, X. Cheng, G. Sapiro, and Q. Qiu.
"A dictionary approach to domain-invariant learning in deep networks".
34th Conference on Neural Information Processing Systems (NeurIPS 2020).
[Abstract]
[arXiv: 1909.11285]
Original name: "Domain-invariant learning using adaptive filter decomposition".
-
H. Li, O. Lindenbaum, X. Cheng, and A. Cloninger.
"Variational diffusion autoencoders with random walk sampling".
2020 European Conference on Computer Vision (ECCV 2020).
[Abstract]
[arXiv: 1905.12724]
-
Z. Wang, X. Cheng, G. Sapiro, and Q. Qiu.
"Stochastic conditional generative networks with basis decomposition."
International Conference on Learning Representations (ICLR 2020).
[Abstract]
[arXiv: 1909.11286]
-
Z. Xu, Y. Li, and X. Cheng.
"Butterfly-net2: simplified Butterfly-net and Fourier transform initialization."
The First Mathematical and Scientific Machine Learning Conference (MSML 2020).
[Abstract]
[arXiv: 1912.04154]
[Code]
-
X. Cheng, Q. Qiu, R. Calderbank, and G. Sapiro.
"RotDCF: Decomposition of convolutional filters for rotation-equivariant deep networks".
International Conference on Learning Representations (ICLR 2019).
[Abstract]
[arXiv: 1805.06846]
[Code] (Pytorch code by Zichen Miao)
-
Q. Qiu, X. Cheng, R. Calderbank, and G. Sapiro.
"DCFNet: Deep neural network with decomposed convolutional filters”.
Proceedings of The 35rd International Conference on Machine Learning (ICML 2018).
[Abstract]
[arXiv:1802.04145]
[Code:
Matlab,
Pytorch (by Ze Wang)]
-
B. Yan, P. Sarkar, and X. Cheng.
"Provable estimation of the number of blocks in block models".
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS 2018).
[Abstract]
[arXiv:1705.08580]
-
U. Shaham, X. Cheng, O. Dror, A. Jaffe, B. Nadler, J. Chang and Y. Kluger.
"A deep learning approach to unsupervised ensemble learning".
Proceedings of The 33rd International Conference on Machine Learning (ICML 2016).
[Abstract]
[PDF]
-
X. Chen, X. Cheng, and S. Mallat.
"Unsupervised deep Haar scattering on graphs".
Advances in Neural Information Processing Systems 27 (NIPS 2014).
[Abstract]
[Explanation]
[Code]
[PDF]
|
|