Assignment 5
(Refer to October 2)

Reading: (from Reed) §6.1, 3.2

Problems:
§2.4: #7, 10
§2.6: #1, 3, 9
§6.1: #1(a,c), 8

Additional Problems:
1. Let \(\{a_n\} \) and \(\{b_n\} \) be Cauchy sequences in an ordered field \(F \). Let \(\{a_n\} \sim \{b_n\} \) mean that \(a_n - b_n \to 0 \). Prove that \(\sim \) is an equivalence relation:
 \(\{a_n\} \sim \{a_n\} \); if \(\{a_n\} \sim \{b_n\} \) then \(\{b_n\} \sim \{a_n\} \); if \(\{a_n\} \sim \{b_n\} \) and \(\{b_n\} \sim \{c_n\} \), then \(\{a_n\} \sim \{c_n\} \).
2. Let \(C(F) \) denote the set of equivalence classes of Cauchy sequences in \(F \). Find an injective function \(F \to C(F) \). (So we can think of \(F \) as a subset of \(C(F) \), \(F \subseteq C(F) \): we have “enlarged” \(F \).)
3. Prove that the sum and product of Cauchy sequences is Cauchy.
4. Let \([a_n]\) denote the equivalence class containing the Cauchy sequence \(\{a_n\} \). Given Cauchy sequences \(\{a_n\} \) and \(\{b_n\} \), define the sum and product of the equivalence classes containing them by
 \[
 [a_n] +_{C(F)} [b_n] := [a_n + b_n]
 \]
 \[
 [a_n] \cdot_{C(F)} [b_n] := [a_n b_n]
 \]
 Prove that these rules are well-defined by showing that if \(\{a_n\} \sim \{a'_n\} \) and \(\{b_n\} \sim \{b'_n\} \), then \(\{a_n + b_n\} \sim \{a'_n + b'_n\} \) and \(\{a_n b_n\} \sim \{a'_n b'_n\} \).
5. If \(C(F) \) denotes the set of equivalence classes of Cauchy sequences in \(F \), then with the sum and product operations in 3, \(C \) is in fact a field in such a way that the “copy” of \(F \) in \(C(F) \) in 2. above is the field \(F \) we started with: \(F \subseteq C(F) \) is a subfield. Don’t try to prove this, but identify the additive and multiplicative identities 0 and 1 in \(C(F) \) and verify that \([a_n] +_{C(F)} 0 = [a_n] \) and \([a_n] \cdot_{C(F)} 1 = [a_n] \) for all Cauchy sequences \(\{a_n\} \). (Keep in mind that your choice of 0 (or 1) in your answer will be an equivalence class of Cauchy sequences. This class may be identified by specifying any Cauchy sequence in it.)