Assignment 2
(Due Thursday, September 12, 2006)

Reading: §1.3; A.3; Problem 38, §1.3
Problems: §1.2: #1, 2, 4, 6, 8, 16b
§A.3: #1, 3, 4

Additional Problems: 1. Prove:
 a. If \(a, b \in \mathbb{Z} \) and \(a \mid b \), then \(|a| \leq |b| \).
 b. If \(a, b, c \in \mathbb{Z} \), \(c \mid b \) and \(b \mid a \), then \(c \mid a \).

2. Let \(a \in \mathbb{Z} \) and let \(D(a) \) be the set of divisors of \(a \). Let \(a = bq + r \), where \(b, q, r \in \mathbb{Z} \). Prove that \(D(a) \cap D(b) = D(r) \cap D(b) \).

3. Let \(a, b \in \mathbb{Z} \) and let
 \[L(a, b) = \{ ma + nb \mid m, n \in \mathbb{Z} \}, \]
 be the set of linear combinations of \(a \) and \(b \). Let \(a = bq + r \), where \(q, r \in \mathbb{Z} \). Prove that
 \[L(a, b) = L(r, b). \]

4. Let \(a, b, d \in \mathbb{Z} \) and suppose that \(d \mid a \) and \(d \mid b \). Prove that \(d \mid (a, b) \), where \((a, b) \) denotes the greatest common divisor of \(a \) and \(b \). (This shows that the definition of greatest common divisor of \(a \) and \(b \) given on p.13 of the text is the same as that given in class: \(\max\{D(a) \cap D(b)\} \).)

5. Challenge problem: §1.2, #19 (You may assume \((a, b) = 1 \).)