On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization.

William K. Allard
Duke University
Thanx to Kevin Vixie who introduced me to these problems while I was visiting Los Alamos National Laboratory last year.
Let \(n \) be an integer such that \(2 \leq n \leq 7 \).

In case \(n > 7 \) problems arise because our work will depend in an essential way on the regularity of area minimizing hypersurfaces in \(\mathbb{R}^n \).

For applications it appears that \(n = 2, 3, 4 \) are interesting.

Let \(s \) be a "noisy" grayscale image. For example, let \(s: \mathbb{R}^n \to [0, 1] \) be measurable with bounded support.

We seek to replace \(s \) with \(f: \mathbb{R}^n \to \mathbb{R} \) which is not "noisy".

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization.
Let \(n \) be an integer such that \(2 \leq n \leq 7 \). In case \(n > 7 \) problems arise because our work will depend in an essential way on the regularity of area minimizing hypersurfaces in \(\mathbb{R}^n \).

For applications it appears that \(n = 2, 3, 4 \) are interesting.

Let \(s \) be a "noisy" grayscale image. For example, let \(s : \mathbb{R}^n \rightarrow [0, 1] \) be measurable with bounded support.

We seek to replace \(s \) with a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) which is not "noisy".
Let \(n \) be an integer such that \(2 \leq n \leq 7 \). In case \(n > 7 \), problems arise because our work will depend in an essential way on the regularity of area minimizing hypersurfaces in \(\mathbb{R}^n \). For applications it appears that \(n = 2, 3, 4 \) are interesting.

Let \(s \) be a "noisy" grayscale image. For example, let \(s : \mathbb{R}^n \rightarrow [0, 1] \) be measurable with bounded support. We seek to replace \(s \) with \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) which is not "noisy".

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization.
Let n be an integer such that $2 \leq n \leq 7$. In case $n > 7$, problems arise because our work will depend in an essential way on the regularity of area minimizing hypersurfaces in \mathbb{R}^n. For applications it appears that $n = 2, 3, 4$ are interesting. Let s be a "noisy" grayscale image. For example, let $s: \mathbb{R}^n \to [0, 1]$ be measurable with bounded support. We seek to replace s with $f: \mathbb{R}^n \to \mathbb{R}$ which is not "noisy".
Let n be an integer such that $2 \leq n \leq 7$. In case $n > 7$, problems arise because our work will depend in an essential way on the regularity of area minimizing hypersurfaces in \mathbb{R}^n. For applications it appears that $n = 2, 3, 4$ are interesting. Let s be a "noisy" grayscale image. For example, let $s: \mathbb{R}^n \to [0, 1]$ be measurable with bounded support. We seek to replace $s_f: \mathbb{R}^n \to \mathbb{R}$ which is not "noisy".
How far is f from s?

Suppose $\beta : [0, \infty) \rightarrow [0, \infty)$ is increasing and zero at zero and $\gamma : \mathbb{R} \rightarrow [0, \infty)$ is even, increasing and zero at zero.

For any real valued measurable function f on \mathbb{R}^n let $w(f) = \beta(\int \gamma(f(x) - s(x)) \, dL_nx)$ be the "distance" from f to s.

Assume $w(s) < \infty$. On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.5/27
How far is f from s?

Suppose $\beta : [0, \infty) \rightarrow [0, \infty)$ is increasing and zero at zero and $\gamma : \mathbb{R} \rightarrow [0, \infty)$ is even, increasing and zero at zero.

For any real valued measurable function f on \mathbb{R}^n let $w(f) = \beta(\int \gamma(f(x) - s(x)) \, dL^n(x))$ be the "distance" from f to s.

Assume $w(s) < \infty$.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.5/27
How far is f from s?

Suppose $\beta : [0, \infty) \to [0, \infty)$ is increasing and zero at zero and $\gamma : \mathbb{R} \to [0, \infty)$ is even, increasing and zero at zero. For any real valued measurable function f on \mathbb{R}^n let $w(f) = \beta(\int \gamma(f(x) - s(x)) \, dL^n(x))$ be the “distance” from f to s.

Assume $w(s) < \infty$.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.5/27
How far is f from s?

Suppose $\beta: [0, \infty) \to [0, \infty)$ is increasing and zero at zero and $\gamma: \mathbb{R} \to [0, \infty)$ is even, increasing and zero at zero. For any real valued measurable function f on \mathbb{R}^n let $w(f) = \beta(\int \gamma(f(x) - s(x)) \, dx)$ be the "distance" from f to s. Assume $w(s) < \infty$.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.5/27
For example, Rudin, Osher and Fatemi (ROF) study
\[\beta(y) = y, \quad y \in [0, \infty) \]
and
\[\gamma(y) = \frac{1}{2} y^2, \quad y \in \mathbb{R} \]
so
\[w(f) = \frac{1}{2} \int |f - s|^2 dL. \]
Chan and Esedoglu (CE) use the same \(\beta \) but let
\[\gamma(y) = |y|, \quad y \in \mathbb{R} \]
so
\[w(f) = \int |f - s| dL. \]
It may not make much difference, as we shall see later.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.6/27
For example, Rudin, Osher and Fatemi (ROF) study \(\beta(y) = y, y \in [0, \infty) \) and \(\gamma(y) = \frac{1}{2}y^2, y \in \mathbb{R} \) so \(w(f) = \frac{1}{2} \int |f - s|^2 dL \).

Chan and Esedoglu (CE) use the same \(\beta \) but let \(\gamma(y) = |y|, y \in \mathbb{R} \) so \(w(f) = \int |f - s| dL \).

It may not make much difference, as we shall see later.
Rudin, Osher and Fatemi (ROF) study $\beta(y) = y, y \in [0, \infty)$ and $\gamma(y) = \frac{1}{2} y^2, y \in \mathbb{R}$ so $w(f) = \frac{1}{2} \int |f - s|^2 \, dL_n$.

Chan and Esedoglu (CE) use the same β but let $\gamma(y) = |y|, y \in \mathbb{R}$ so $w(f) = \int |f - s| \, dL_n$.

It may not make much difference, as we shall see later.
Total variation regularization

But we need to "regularize" \(f \). So let \(\epsilon > 0 \) and require that \(f \) be a minimizer of

\[
W_\epsilon(f) = \epsilon \text{TV}(f) + \beta \int_\mathbb{R}^n \gamma(f(x) - s(x)) \, d\mu(x);
\]

where \(\text{TV}(f) = \sup \{ \| \int f \, \text{div} X \, d\mu \| : X \in X(\mathbb{R}^n) \} \) and \(X(\mathbb{R}^n) \) is the space of smooth compactly supported vector fields on \(\mathbb{R}^n \).
Some basic facts.

Suppose f is a minimizer for $W \in \mathbb{R}$. Then $\text{ess sup} |f| \leq \text{ess sup} |s|$ and the support of f is contained in the convex hull of the support of s.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.8/27
Some basic facts.

Suppose f is a minimizer for $W \in {\mathcal{E}}$. Then $\text{ess sup} |f| \leq \text{ess sup} |s|$ and the support of f is contained in the convex hull of the support of s.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.8/27
Some basic facts.

Suppose f is a minimizer for W_ϵ. Then $\text{ess sup} |f| \leq \text{ess sup} |s|$ and the support of f is contained in the convex hull of the support of s.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.8/27
$D_m(\mathbb{R}^n)$ is the space of smooth compactly supported differential m-forms on \mathbb{R}^n with the strong topology. Its dual, denoted by $D_m(\mathbb{R}^n)$, is the space of m-dimensional currents in \mathbb{R}^n.

Let $||T||$ be the largest Borel regular measure on \mathbb{R}^n such that $||T||(G) = \sup\{||T(\omega)|| : \omega \in D_m(\mathbb{R}^n) \text{ and } ||\omega|| \leq 1\}$.

We say T is representable by integration if $||T||$ is a Radon measure.

Suppose $T \in D_m(\mathbb{R}^n)$. Its boundary ∂T, defined by setting $\partial T(\omega) = T(d\omega)$, $\omega \in D_{m-1}(\mathbb{R}^n)$, is evidently in $D_{m-1}(\mathbb{R}^n)$.

This is making Stokes' Theorem into a definition.
$D^m(R^n)$ is the space of smooth compactly supported differential m-forms on R^n with the strong topology. Its dual, denoted by $D^m(R^n)$, is the space of m-dimensional currents in R^n.

Let $||T||$ be the largest Borel regular measure on R^n such that $||T||(G) = \sup\{ |T(\omega)| : \omega \in D^m(R^n) \text{ and } ||\omega|| \leq 1 \}$.

We say T is representable by integration if $||T||$ is a Radon measure.

Suppose $T \in D^m(R^n)$. Its boundary ∂T, defined by setting $\partial T(\omega) = T(d\omega)$, $\omega \in D^{m-1}(R^n)$, is evidently in $D^{m-1}(R^n)$.

This is making Stokes' Theorem into a definition.
$D_m(R^n)$ is the space of smooth compactly supported differential m-forms on R^n with the strong topology. Its dual, denoted by $D^m(R^n)$, is the space of m-dimensional currents in R^n. Let $||T||$ be the largest Borel regular measure on R^n such that $||T||(G) = \sup\{||T(\omega)|| : \omega \in D^m(R^n) \text{ and } ||\omega|| \leq 1 \}$. We say T is representable by integration if $||T||$ is a Radon measure.

Suppose $T \in D^m(R^n)$. Its boundary ∂T, defined by setting $\partial T(\omega) = T(d\omega)$, $\omega \in D^{m-1}(R^n)$, is evidently in $D^{m-1}(R^n)$.
\textit{Currents.}

$D^m(R^n)$ is the space of smooth compactly supported differential m-forms on R^n with the strong topology. Its dual, denoted by $D^m(R^n)$, is the space of m-dimensional currents in R^n. Let
\[||T|| \]
be the largest Borel regular measure on R^n such that
\[||T||(G) = \sup \{ |T(\omega)| : \omega \in D^m(R^n) \text{ and } ||\omega|| \leq 1 \} \].

We say T is representable by integration if $||T||$ is a Radon measure.

Suppose $T \in D^m(R^n)$. Its boundary ∂T, defined by setting
\[\partial T(\omega) = T(d\omega), \quad \omega \in D^{m-1}(R^n), \]
is evidently in $D^{m-1}(R^n)$. This is making Stokes' Theorem into a definition.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.9/27
$D^m(R^n)$ is the space of smooth compactly supported differential m-forms on R^n with the strong topology. Its dual, denoted by $D^m(R^n)$, is the space of m-dimensional currents in R^n. Let $||\cdot||$ be the largest Borel regular measure on R^n such that $||T||(G) = \sup\{||T(\omega)|| : \omega \in D^m(R^n) \text{ and } ||\omega|| \leq 1 \}$. We say T is representable by integration if $||T||$ is a Radon measure. Suppose $T \in D^m(R^n)$. Its boundary ∂T, defined by setting $\partial T(\omega) = T(d\omega)$, $\omega \in D^{m-1}(R^n)$, is evidently in $D^{m-1}(R^n)$. This is making Stokes' Theorem into a definition.
$\mathcal{D}^m(n)$ is the space of smooth compactly supported differential m-forms on \mathbb{R}^n with the strong topology. Its dual, denoted by $\mathcal{D}^m(\mathbb{R}^n)$, is the space of m-dimensional currents in \mathbb{R}^n. Let $||T||$ be the largest Borel regular measure on \mathbb{R}^n such that $||T||(G) = \sup\{||T(\omega)|| : \omega \in \mathcal{D}^m(\mathbb{R}^n) \text{ and } ||\omega|| \leq 1\}$.

We say T is representable by integration if $||T||$ is a Radon measure. Suppose $T \in \mathcal{D}^m(\mathbb{R}^n)$. Its boundary ∂T, defined by setting $\partial T(\omega) = T(d\omega)$, $\omega \in \mathcal{D}^{m-1}(\mathbb{R}^n)$, is evidently in $\mathcal{D}^{m-1}(\mathbb{R}^n)$. This is making Stokes' Theorem into a definition.
Suppose $f \in L_{\text{loc}}^1(\mathbb{R}^n)$. Let $[f] \in D_n(\mathbb{R}^n)$ be such that $[f](\omega) = \int f(x) \omega(x)(e_1, \ldots, e_n) \, dL_n^x$ for $\omega \in D_n(\mathbb{R}^n)$.

Then $\text{TV}(f) = ||\partial [f]||(\mathbb{R}^n)$.

If $f \geq 0$ we have the stacking formulae $[f] = \int_0^\infty [\{f \geq y\}] \, dL_1^y$ and $\partial [f] = \int_0^\infty \partial [\{f \geq y\}] \, dL_1^y$; $||\partial [f]|| = \int_0^\infty ||\partial [\{f \geq y\}]|| \, dL_1^y$;
Suppose \(f \in L^{1}_{\text{loc}}(\mathbb{R}^{n}) \). Let \([f] \in D_{n}(\mathbb{R}^{n})\) be such that

\[
[f](\omega) = \int f(x) \omega(x)(e_{1}, \ldots, e_{n}) \, d\mathbb{L}^{n}(x)
\]

for \(\omega \in D_{n}(\mathbb{R}^{n}) \).

Then \(\text{TV}(f) = ||\partial [f]||(\mathbb{R}^{n}) \).

If \(f \geq 0 \) we have the stacking formulae

\[
[f] = \int_{0}^{\infty} [\{f \geq y\}] \, d\mathbb{L}^{1}(y)
\]

and

\[
\partial [f] = \int_{0}^{\infty} \partial [\{f \geq y\}] \, d\mathbb{L}^{1}(y)
\]

and

\[
||\partial [f]|| = \int_{0}^{\infty} ||\partial [\{f \geq y\}]|| \, d\mathbb{L}^{1}(y)
\]
Suppose $f \in L^1_{\text{loc}}(\mathbb{R}^n)$. Let $[f] \in \mathcal{D}^n(\mathbb{R}^n)$ be such that

$$[f](\omega) = \int f(x) \omega(x)(e_1, \ldots, e_n) dL^n_x$$

for $\omega \in \mathcal{D}^n(\mathbb{R}^n)$. Then $\text{TV}(f) = ||\partial [f]||(\mathbb{R}^n)$.

If $f \geq 0$ we have the stacking formulae

$$[f] = \int_0^\infty [\{ f \geq y \}] dL_1^y$$

and

$$\partial [f] = \int_0^\infty \partial [\{ f \geq y \}] dL_1^y;$$

$$||\partial [f]|| = \int_0^\infty ||\partial [\{ f \geq y \}]|| dL_1^y.$$
Suppose \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \). Let \([f] \in D^n(\mathbb{R}^n) \) be such that

\[
[f](\omega) = \int f(x) \omega(x)(e_1, \ldots, e_n) \, dL^n_x
\]

for \(\omega \in D^n(\mathbb{R}^n) \). Then

\[
\text{TV}(f) = ||\partial [f]||(\mathbb{R}^n).
\]

If \(f \geq 0 \) we have the stacking formulae

\[
[f] = \int_{\mathbb{R}^n} \{f \geq y\} \, dL^1_y
\]

and

\[
\partial [f] = \int_{\mathbb{R}^n} \partial \{f \geq y\} \, dL^1_y;
\]

\[
||\partial [f]|| = \int_{\mathbb{R}^n} ||\partial \{f \geq y\}|| \, dL^1_y.
\]
Suppose $f \in L_{\text{loc}}^1(\mathbb{R}^n)$. Let $[f] \in \mathcal{D}_n(\mathbb{R}^n)$ be such that $[f](\omega) = \int f(x) \omega(x)(e_1, \ldots, e_n) \, d\mathbb{L}^n_x$ for $\omega \in \mathcal{D}_n(\mathbb{R}^n)$. Then $\text{TV}(f) = ||\partial [f]||(\mathbb{R}^n)$.

If $f \geq 0$ we have the stacking formulae $[f] = \int_0^\infty \{ f \geq y \} \, d\mathbb{L}^1_y$ and $\partial [f] = \int_0^\infty \partial \{ f \geq y \} \, d\mathbb{L}^1_y$; $||\partial [f]|| = \int_0^\infty ||\partial \{ f \geq y \}|| \, d\mathbb{L}^1_y$.
The space \(\lambda(\mathbb{R}^n) \) consists of those \(f \in \text{BV}_{\text{loc}}(\mathbb{R}^n) \) such that

\[
\|\partial[f]\|_K \leq \|\partial[g]\|_K + \lambda \int |f - g| dL_n
\]

whenever \(g \in \text{BV}_{\text{loc}}(\mathbb{R}^n) \), \(K \) is a compact subset of \(\mathbb{R}^n \), and \(\text{spt}[f - g] \subset K \) and \(\text{ess inf} f \leq g \leq \text{ess sup} f \).

Theorem. A minimizer for the (CE) model is in \(B^1/\epsilon(\mathbb{R}^n) \). A similar result holds for the model in general as well as for models which are Lipschitz continuous in the \(L_1 \) norm.
The space \mathcal{B} consists of those $f \in \text{BV}_{\text{loc}}(\mathbb{R}^n)$ such that

$$||| \partial [f] |||_K \leq ||\partial [g]||_K + \lambda \int |f - g| \, d\mathbb{L}_{\mathbb{R}^n}$$

whenever $g \in \text{BV}_{\text{loc}}(\mathbb{R}^n)$, K is a compact subset of \mathbb{R}^n and $\text{spt} [f - g] \subset K$ and $\text{ess inf} f \leq g \leq \text{ess sup} f$.

Theorem. A minimizer for the (CE) model is in $\mathcal{B}_{1/\epsilon}(\mathbb{R}^n)$. A similar result holds for the model in general as well as for models which are Lipschitz continuous in the L^1 norm.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.12/27
The space $\lambda(R^n)$ consists of those $f \in BV_{\text{loc}}(R^n)$ such that $\|\partial f\|_K \leq \|\partial g\|_K + \lambda \int |f-g| \, dL^n$ whenever $g \in BV_{\text{loc}}(R^n)$, K is a compact subset of R^n and $\text{spt}[f-g] \subset K$ and $\text{ess inf} f \leq g \leq \text{ess sup} f$.

Theorem. A minimizer for the (CE) model is in $B_{1/\epsilon}(R^n)$. A similar result holds for the model in general as well as for models which are Lipschitz continuous in the L^1 norm.
A simple proof.

Suppose f is a minimizer for the CE model. Let g be such that the support of $g - f$ is compact.

Then

$$\epsilon \text{TV}(f) + \int |f - s| = W \epsilon(f) \leq W \epsilon(g) = \epsilon \text{TV}(g) + \int |g - s| - |f - s| \leq \epsilon \text{TV}(g) + 1 \epsilon \int |f - g|.$$
A simple proof.
Suppose f is a minimizer for the CE model. Let g be such that the support of $g - f$ is compact. Then

$$\epsilon_{TV}(f) + \int |f - s| = \epsilon_{TV}(g) + \int |g - s| \leq \epsilon_{TV}(g) + 1 \int |g - s| - |f - s| \leq \epsilon_{TV}(g) + 1 \epsilon_{TV}(f).$$

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization.
A simple proof.

Suppose \(f \) is a minimizer for the CE model. Let \(g \) be such that the support of \(g - f \) is compact. Then

\[
\epsilon TV(f) + \int |f - s| = W\epsilon(f) \leq W\epsilon(g) = \epsilon TV(g) + \frac{1}{\epsilon} \int |g - s| - |f - s| \leq \epsilon TV(g) + \frac{1}{\epsilon} \int |f - g|.
\]

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.13/27
Regularity Theorem for $B_{\lambda}(\mathbb{R}^n)$

For each $\lambda > 0$ there are $C: (0, 1) \to (0, \infty)$ and $\rho > 0$ such that if $f \in B_{\lambda}(\mathbb{R}^n)$ and $y \in \mathbb{R}$ then $E = \text{spt}(\partial\{f \geq y\})$ is an embedded C^1 submanifold of \mathbb{R}^n (possibly empty) with the property that if N is a continuous field of normals to E then

$$|N(x) - N(a)| \leq C|x - a|$$

whenever $x, a \in E$ and $|a - b| \geq \rho$ if $a, b \in E$, $a \neq b$ and $N(a) = \pm N(b)$.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.14/27
Theorem. Suppose $f \in B_{\lambda}(\mathbb{R}^n)$ and $y \in \mathbb{R}$. Then $tf, f + t, f \land t$ and $f \lor t$ are in $B_{\lambda}(\mathbb{R}^n)$.

Theorem. Suppose $f \in L_{loc}^{1}(\mathbb{R}^n)$. The following are equivalent:

$f \in B_{\lambda}(\mathbb{R}^n) \iff \{f \geq y\} \in B_{\lambda}(\mathbb{R}^n)$ for all $y \in \mathbb{R}$.
Theorem. Suppose $f \in \mathcal{B}_\lambda (\mathbb{R}^n)$ and $y \in \mathbb{R}$. Then tf, $f + t$, $f \land t$ and $f \lor t$ are in $\mathcal{B}_\lambda (\mathbb{R}^n)$.

Theorem. Suppose $f \in L_{loc}^1 (\mathbb{R}^n)$. The following are equivalent:

1. $f \in \mathcal{B}_\lambda (\mathbb{R}^n)$
2. $\{ f \geq y \} \in \mathcal{B}_\lambda (\mathbb{R}^n)$ for all $y \in \mathbb{R}$.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.15/27
Some assumptions.

Let's assume $\beta(y) = y$ for $y \in [0, \infty)$; it really doesn't make that much difference.

Let us also assume that U is an open subset of \mathbb{R}^n, s is smooth on U, γ is convex and J is an open interval such that $U \times J \ni (x, y) \mapsto \gamma(y - s(x))$ is smooth.

In the (CE) model this last condition may be replaced by the condition that either $s \geq f$ or $f \leq s$ essentially on U.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.16/27
Some assumptions.

Let's assume $\beta(y) = y$ for $y \in [0, \infty)$; it really doesn't make that much difference. Let us also assume that U is an open subset of \mathbb{R}^n, s is smooth on U, γ is convex and J is an open interval such that $U \times J \ni (x, y) \mapsto \gamma(y - s(x))$ is smooth.

In the (CE) model this last condition may be replaced by the condition that either $s \geq f$ or $f \leq s$ essentially on U.
Some assumptions.

Let's assume $\beta(y) = y$ for $y \in [0, \infty)$; it really doesn't make that much difference. Let us also assume that U is an open subset of \mathbb{R}^n, s is smooth on U, γ is convex and J is an open interval such that $U \times J \ni (x, y) \mapsto \gamma(y - s(x))$ is smooth.

In the (CE) model this last condition may be replaced by the condition that either $s \geq f$ or $f \leq s$ essentially on U. On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.16/27
Some assumptions.

Let's assume $\beta(y) = y$ for $y \in [0, \infty)$; it really doesn't make that much difference. Let us also assume that U is an open subset of \mathbb{R}^n, s is smooth on U, γ is convex and J is an open interval such that $U \times J \ni (x, y) \mapsto \gamma(y - s(x))$ is smooth. In the (CE) model this last condition may be replaced by the condition that either $s \geq f$ or $f \leq s$ essentially on U.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.16/27
Some assumptions.

Let's assume $\beta(y) = y$ for $y \in [0, \infty)$; it really doesn't make that much difference. Let us also assume that U is an open subset of \mathbb{R}^n, s is smooth on U, γ is convex and J is an open interval such that $U \times J \ni (x, y) \mapsto \gamma(y - s(x))$ is smooth.

In the (CE) model this last condition may be replaced by the condition that either $s \geq f$ or $f \leq s$ essentially on U. On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization.
Precise mean curvature information.

Theorem. Suppose f is a minimizer of W_{ϵ}, $y \in J$, and $E = U \cap \text{spt} \partial \{ f \geq y \} \neq \emptyset$.

Then E is smooth.

Moreover, if Π is the second fundamental form of E relative to $N = n \{| f \geq y \}|E$ then $\text{trace} \Pi(x) = \frac{1}{\epsilon} \gamma'(y - s(x))$, $x \in E$.

By the way, Π is defined in such a way that if $\{ f \geq y \} = \{| x | \leq R \}$ for some positive R then $\text{trace} \Pi(x) = -n - 1 R$.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.17/27
Theorem. Suppose f is a minimizer of W_ϵ, $y \in J$ and $E = U \cap \text{spt}\partial\{f \geq y\} \neq \emptyset$.

Then E is smooth. Moreover, if Π is the second fundamental form of E relative to $N = n\{|f \geq y\}|E$ then $\text{trace}\,\Pi(x) = 1/\epsilon \gamma'(y - s(x))$, $x \in E$.

By the way .., Π is defined in such a way that if $\{f \geq y\} = \{|x| \leq R\}$ for some positive R then $\text{trace}\,\Pi(x) = -n^{-1}R$.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.17/27
Precise mean curvature information.

Theorem.

Suppose \(f \) is a minimizer of \(W_{\epsilon} \), \(y \in J \) and \(E = U \cap \text{spt} \partial \{ f \geq y \} \neq \emptyset \).

Then \(E \) is smooth.

Moreover, if \(\Pi \) is the second fundamental form of \(E \) relative to \(N = n \{ f \geq y \} | E \) then

\[
\text{trace } \Pi(x) = \frac{1}{\epsilon} \gamma' (y - s(x)), x \in E.
\]

By the way .., \(\Pi \) is defined in such a way that if \(\{ f \geq y \} = \{|x| \leq R\} \) for some positive \(R \) then

\[
\text{trace } \Pi(x) = -n - 1 R.
\]
Precise mean curvature information.

Theorem. Suppose f is a minimizer of W_{ϵ}, $y \in J$ and $E = U \cap \text{spt} \partial \{f \geq y\} \neq \emptyset$.

Then E is smooth. Moreover, if Π is the second fundamental form of E relative to $N = \frac{1}{\text{spt} \partial \{f \geq y\}}|E|$, then

$$\text{trace } \Pi(x) = \frac{1}{\epsilon} \gamma'(y - s(x)), \quad x \in E.$$

By the way, Π is defined in such a way that if $\{f \geq y\} = \{|x| \leq R\}$ for some positive R, then

$$\text{trace } \Pi(x) = -n - 1 \frac{R}{\epsilon}.$$
Precise mean curvature information.

Theorem. Suppose f is a minimizer of W_{ϵ}, $y \in J$ and $E = U \cap \text{spt} \partial \{ f \geq y \} \neq \emptyset$.

Then E is smooth. Moreover, if Π is the second fundamental form of E relative to $N = n |_{\{ f \geq y \} \setminus E}$ then

$$\text{trace} \, \Pi(x) = \frac{1}{\epsilon} \gamma'(y - s(x)), \quad x \in E.$$

By the way, Π is defined in such a way that if $\{ f \geq y \} = \{|x| \leq R\}$ for some positive R, then

$$\text{trace} \, \Pi(x) = -n - 1 R.$$

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.17/27
The second variation inequality.

Theorem.

Same assumptions and definitions of previous Theorem.

\[
\int_{E} |\partial \psi|^2 dH^{n-1} \geq \int_{E} \psi^2 \left(\gamma'(y-s)^2 - \epsilon^2 \gamma''(y-s) \nabla s \cdot N\right) dH^{n-1}.
\]

for any smooth real valued compactly supported function \(\psi\) on \(E\).
The case \(n = 2 \).

Suppose \(P : [0, L] \to E \) is an arclength parameterization of a connected component of \(E \). Then the second variation inequality says that

\[
\int_{L}^{0} (\zeta')^2 \geq \int_{L}^{0} \zeta^2 ((\gamma' (y - s \circ P)) \epsilon^2 - \gamma'' (y - s \circ P) \nabla s \cdot N \epsilon^2)
\]

whenever \(\zeta \) is \(C^1 \) on \([0, L] \) and vanishes at 0 and L.

Suppose \(s \) is constant on \(U \). Let \(\zeta (\sigma) = \sin (\pi \sigma / L) \), \(\sigma \in [0, L] \).

infer that if \(R \) is the radius of curvature of the range of \(P \) then \(L \leq \pi R \) for the (CE) model or for the (ROF) model.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.19/27
The case \(n = 2 \).

Suppose \(P : [0, L] \to E \) is an arclength parameterization of a connected component of \(E \). Then the second variation inequality says that

\[
\int_0^L (\zeta'')^2 \geq \int_0^L \zeta^2 \left((\gamma' (y - s \circ P) \epsilon)^2 - \gamma'' (y - s \circ P) \nabla s \cdot N \epsilon \right)
\]

whenever \(\zeta \) is \(C^1 \) on \([0, L] \) and vanishes at 0 and \(L \).

Suppose \(s \) is constant on \(U \). Let \(\zeta (\sigma) = \sin (\pi \sigma / L) \), \(\sigma \in [0, L] \).

infer that if \(R \) is the radius of curvature of the range of \(P \) then

\(L \leq \pi R \) for the (CE) model or for the (ROF) model.
We're in $\mathbb{R} \times \mathbb{R}$; the blue stuff is $\{ (x, y) : 0 \leq f(x) \leq y \}$.

If the purple line is at $x = a$ then the length of the solid part is $f(a)$.

Blue plus red when sliced, say where the green is, will define a comparison to f, call it g. If the green line is at $x = b$ then the sum of the lengths of the green solid pieces is $g(b)$. On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization.
A simple case which we can solve.

Theorem. Suppose \(n = 2 \), \(s \) is the indicator function of a closed convex set \(S \), \(f \) is a minimizer of \(W \epsilon \), \(0 \leq y \leq 1 \) and \(E = \text{spt} \left(\{ f \geq y \} \right) \neq \emptyset \). Then \(E \) is the union of the closed balls of radius of \(\epsilon \) which are contained in \(S \).
A simple case which we can solve.

Theorem. Suppose $n = 2$, s is the indicator function of a closed convex set S, f is a minimizer of $W \in [0, 1]$, and $E = \text{spt}(\{f \geq y\}) \neq \emptyset$.

Then E is the union of the closed balls of radius of ϵ which are contained in S. On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.21/27
A simple case which we can solve.

Theorem. Suppose $n = 2$, s is the indicator function of a closed convex set S, f is a minimizer of W_ϵ, $0 \leq y \leq 1$ and $E = \text{spt}(\{f \geq y\}) \neq \emptyset$.

Then E is the union of the closed balls of radius of ϵ which are contained in S.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.21/27
A simple case which we can solve.

Theorem.

Suppose $n = 2$, s is the indicator function of a closed convex set S, f is a minimizer of W_{ϵ}, $0 \leq y \leq 1$ and $E = \text{spt}(\{f \geq y\}) \neq \emptyset$.

Then E is the union of the closed balls of radius of ϵ which are contained in S.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.21/27
A simple case which we can solve.

Theorem. Suppose $n = 2$, s is the indicator function of a closed convex set S, f is a minimizer of W_{ϵ}, $0 \leq y \leq 1$ and $E = \text{spt}(\{ f \geq y \}) \neq \emptyset$. Then E is the union of the closed balls of radius of ϵ which are contained in S.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.21/27
An example for the CE model

The blue curve is the boundary of S which has area considerably larger than ϵ^2.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization. – p.22/27
Still another example for the CE model.

The vertical separation between the blue rectangles must be less than 2ϵ.

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization.
The answer is...
An example for the ROF model

Suppose s is the indicator function of a square of side length 2. Let's look near the upper left hand corner.

Remember:

$$R = 1 - y \epsilon, \quad y = 1 - \epsilon \quad R, \quad \epsilon < R < 1.$$
Another example for the ROF model

Suppose \(s \) is the indicator function of a something whose upper left hand corner is in blue. Remember:

\[
R = \begin{cases}
\epsilon - y & \text{on the inside}, \\
\epsilon y & \text{on the outside}.
\end{cases}
\]

On the regularity and curvature properties of level sets of minimizers for denoising models using total variation regularization.