The critical set goes to a set of measure zero.

Proposition. Suppose \(S \) is an \(r \)-dimensional linear subspace of \(\mathbb{R}^n \) and \(b \in \mathbb{R}^n \). Then for any \(R > 0 \) and any \(\epsilon > 0 \) we have
\[
\mathcal{L}^n(\{y \in B_b(R) : \text{dist} (y, b + S) \leq \epsilon\}) \leq 2^r R^r \epsilon^{n-r}.
\]

Proof. Translating by \(-b\) if necessary we may assume that \(b = 0 \). Rotating \(S \) if necessary we may assume that \(S = \mathbb{R}^r \times \{0\} \) where we identify \(\mathbb{R}^n \) with \(\mathbb{R}^r \times \mathbb{R}^{n-r} \) and where we make use of the fact that
\[
\mathcal{L}^n(L[A]) = |\det L|\mathcal{L}^n(A) \quad \text{for any Lebesgue measurable subset of } \mathbb{R}^n.
\]

Finally, we observe that
\[
\mathcal{L}^n(\{(y, z) \in \mathbb{R}^r \times \mathbb{R}^{n-r} : |(y, z)| \leq R \text{ and } |z| \leq \epsilon\})
\leq \mathcal{L}^n(\{(y, z) \in \mathbb{R}^r \times \mathbb{R}^{n-r} : |y| \leq R \text{ and } |z| \leq \epsilon\})
\leq 2^n R^r \epsilon^{n-r}
\]
by Tonelli’s Theorem. \(\Box \)

Corollary. Suppose
\begin{enumerate}
\item \(U \) is an open subset of \(\mathbb{R}^n \) and \(f : U \to \mathbb{R}^n \) is continuously differentiable;
\item \(a \in A \subset U \) and \(A \) is convex;
\item \(M = \sup\{||\partial f(x)|| : x \in A\} < \infty; \)
\item \(\epsilon = \sup\{||\partial f(x) - \partial f(a)|| : x \in A\} < \infty; \) and
\item \(r = \dim \operatorname{range} \partial f(a). \) Then
\item \(\mathcal{L}^n(\partial f[A]) = 2^n (\dim \mathcal{A})^n M^r \epsilon^{n-r}. \)
\end{enumerate}

Proof. Let \(S \) be the range of \(\partial f(a) \) and let \(b = f(a) \). We will show that
\[
f[A] \subset \{y \in B_b(\max \mathcal{A}) : \text{dist} (y, b + S) \leq \epsilon \max \mathcal{A}\}
\]
and invoke the previous Proposition. By the Fundamental Theorem of Calculus we have
\[
f(x) = b + \int_0^1 \partial f(a)(a + t(x - a))(x - a) \, dt
\]
for any \(x \in A \) from which it follows that
\[
f[A] \subset B_b(\max \mathcal{A})
\]
We may rewrite (6) as
\[
f(x) = b + \partial f(a)(x - a) + \int_0^1 [\partial f(a)(a + t(x - a)) - \partial f(a)(a)](x - a) \, dt
\]
for any \(x \in A \); it follows that
\[
|(f(x) - b) \cdot w| \leq \epsilon \max \mathcal{A}|w|
\]
for any \(x \in A \) and any \(w \in S^\perp \) which implies that the distance from \(f(x) \) to \(S \) does not exceed \(\epsilon \max \mathcal{A} \). \(\Box \)

Standard Cubical Subdivision. Let
\[
C = \{x \in \mathbb{R}^n : 0 \leq x_j < 1 \text{ for } j = 1, \ldots, n\}.
\]
For each integer \(m \) let
\[
C_m = \{2^{-m}(z + C) : z \in \mathbb{Z}^n\}.
\]
Note that \(\text{diam} C = \sqrt{n2^{-m}} \) whenever \(C \in \mathcal{C}_m \).

Theorem. Suppose \(U \) is an open subset of \(\mathbb{R}^n \),
\[f : U \to \mathbb{R}^n \]
continuously differentiable and
\[A = \{ x \in U : \text{dim} \text{rng} \partial f(x) < n \}. \]
Then
\[\mathcal{L}^n(f[A]) = 0. \]

Proof. For each \(k = 1, 2, 3, \ldots \) let
\[A_k = \{ x \in U \cap B_k(0) : \text{dim} \text{rng} \partial f(x) < n \text{ and dist (} x, \mathbb{R}^n \sim A \} \geq \frac{1}{k} \} \]
and note that \(A_k \) is compact. Since \(A = \bigcup_{k=1}^{\infty} A_k \) it will suffice to show that \(\mathcal{L}^n(f[A_k]) = 0 \) for each \(k \).

Let \(k \) be a positive integer. Choose an open set \(G \) such that \(A_k \subset G \) and \(\text{cl} G \) is a compact subset of \(U \). Then \(M = \max \{ ||\partial f(x)|| : x \in \text{cl} G \} < \infty \).

Suppose \(0 < \epsilon \leq M \). Let \(\mathcal{U} \) be the family of those open balls \(U_a(s) \) which are subsets of \(G \) and are such that \(a \in A_k \) and
\[||\partial f(x) - \partial f(a)|| \leq \epsilon \quad \text{whenever} \quad x \in U_a(s); \]
Evidently, \(\mathcal{U} \) is an open covering of \(A_k \); let \(\rho \) be its Lebesgue number. Next choose a positive integer \(N \) such that \(\sqrt{n2^{-M}} < \rho \). Let \(\mathcal{D} \) be the family of those \(C \in \mathcal{C}_N \) such that \(C \cap A_k \neq \emptyset \). By the preceding Corollary,
\[\mathcal{L}^n(f[C]) \leq 2^n(\text{diam} C)^n M^{n-1} \epsilon = (2\sqrt{n})^n M^{n-1} \epsilon \mathcal{L}^n(C) \]
for any \(C \in \mathcal{D} \). Thus
\[\mathcal{L}^n(f[A_k]) \leq \sum_{C \in \mathcal{D}} \mathcal{L}^n(f[C]) \leq \sum_{C \in \mathcal{D}} (2\sqrt{n})^n M^{n-1} \epsilon \mathcal{L}^n(C) = (2\sqrt{n})^n M^{n-1} \epsilon \mathcal{L}^n(\bigcup \mathcal{D}) \leq (2\sqrt{n})^n M^{n-1} \epsilon \mathcal{L}^n(G). \]
Owing to the arbitrariness of \(\epsilon \) we may conclude that \(\mathcal{L}^n(f[A_k]) = 0. \)