Tangency.

Let X be a normed vector space.

Definition. Suppose $v \in X$ and $C \subset X$. We say C is a cone with vertex v if

$$x \in C \sim \{v\} \text{ and } t \geq 0 \Rightarrow v + t(x - v) \in C.$$

Note that the empty set is a cone with vertex v and that $v \in C$ if $C \sim \{v\} \neq \emptyset$.

Proposition. Suppose $v \in X$ and C is a nonempty family of cones with vertex v. Then $\bigcup C$ is a cone with vertex v.

Proof. This is immediate. □

Proposition. Suppose $v \in X$ and C is a cone with vertex v. Then the closure of C is a cone with vertex v.

Proof. Exercise. □

Definition. Suppose $A \subset X$, $a \in \text{acc } A$. For each $\delta > 0$ we let

$$\text{Tan}_a(A, \delta) = \text{cl} \{t(x - a) : t \geq 0, \text{ and } x \in (A \sim \{a\}) \cap B_a(\delta)\}.$$

Note that, by virtue of the previous Proposition, $\text{Tan}_a(A, \delta)$ is a closed cone with vertex 0.

We let

$$\text{Tan}_a(A) = \bigcap_{\delta > 0} \text{Tan}_a(A, \delta)$$

and we let

$$\text{Nor}_a(A) = \{\omega \in X^* : \omega(v) \leq 0 \text{ whenever } v \in \text{Tan}_a(A)\}.$$

Note that $\text{Tan}_a(A)$ and $\text{Nor}_a(A)$ are closed cones in X and X^*, respectively, by virtue of the first Proposition above.

In case X is an inner product space we will also let

$$\text{Nor}_a(A) = \{w \in X : v \cdot w \leq 0 \text{ whenever } v \in \text{Tan}_a(A)\}$$

and rely on the context to resolve the ambiguity.

Theorem. Suppose X is finite dimensional, $A \subset X$, $a \in \text{acc } A$. Then $\text{Tan}_a(A) \neq \emptyset$. Moreover, for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$\text{cl } A \cap B_a(\delta) \subset a + \{v \in X : \text{dist}(v, \text{Tan}_a(A)) \leq \epsilon|v|\}$$

Proof. Let $K = \{u \in X : |u| = 1\}$ and note that K is compact because X is finite dimensional. Let $L = K \cap \text{Tan}_a(A)$ and, for each $\delta > 0$, let $T_\delta = K \cap \text{Tan}_a(A, \delta)$. Then $\{T_\delta : \delta > 0\}$ is a nonempty nested family of closed subsets of the compact set K whose nonempty intersection is L. Moreover, if U is an open set containing L then there is $\delta > 0$ such that $T_\delta \subset U$.

Now suppose $\epsilon > 0$. Let

$$U = \{v \in X \sim \{0\} : \text{dist}(v, \text{Tan}_a(A)) < \epsilon|v|\}$$

and note that U is open. Since $L \subset U$ and U is open there is $\delta > 0$ such that $T_\delta \subset U$. □

Proposition. Suppose $A \subset X$, $a \in \text{acc } A$ and $v \in X \sim \{0\}$. The following are equivalent.

(i) $v \in \text{Tan}_a(A)$.

1
(ii) For each \(\epsilon > 0 \) and \(\delta > 0 \) there are \(s > 0 \) and \(x \in (A \sim \{a\}) \cap B_\delta(0) \) such that
\[
|(x-a) - sv| \leq \epsilon|x-a|.
\]

Proof. Suppose \(v \in \Tan_a(A) \), \(\epsilon > 0 \) and \(\delta > 0 \). Let \(\eta \) be such that \(0 < \eta < 1 \) and \(\frac{1}{1 - \eta} \leq \epsilon \). Since \(v \) is a member of the closure of \(\Tan_a(A, \delta) \), there exist \(x \in (A \sim \{a\}) \cap B_\delta(0) \) and \(t \geq 0 \) such that \(|t(x-a) - v| \leq \eta|v| \). This implies \(|t(x-a) - v| \leq \eta|v| \) so that \(t|x-a| \leq (1-\eta)|v| \). In particular, \(t|x-a| > 0 \). Let \(s = \frac{1}{t} \). Then
\[
|(x-a) - sv| = \frac{1}{t} |t(x-a) - v| \leq \frac{|x-a|}{1-\eta} |\eta| |v| \leq \epsilon|x-a|
\]
so (ii) holds.

On the other hand, suppose (ii) holds, let \(\delta > 0 \) and let \(\rho > 0 \). Let \(\zeta \) be such that \(0 < \zeta < 1 \) and \(\frac{|v|}{1-\zeta} \leq \rho \). Let \(s > 0 \) and \(x \in (A \sim \{a\}) \cap B_\delta(0) \) such that \(|(x-a) - sv| \leq \zeta|x-a| \). Then \(|x-a| - s|v| \leq \zeta|x-a| \) so \(s|v| \geq (1-\zeta)|x-a| \). Set \(t = \frac{1}{s} \). Then
\[
|t(x-a) - v| = \frac{1}{s} |(x-a) - sv| \leq \frac{|v|}{(1-\zeta)|x-a|} |\zeta| |x-a| \leq \rho.
\]

Owing to the arbitrariness of \(\rho \) we infer that \(v \in \Tan_a(A, \delta) \). Owing to the arbitrariness of \(\delta \) we infer that (i) holds.

Theorem. Suppose \(X \) and \(Y \) are normed spaces, \(A \subset X \), \(a \in \text{int} \ A \), \(f : A \rightarrow Y \) and \(f \) is differentiable at \(a \). Then
\[
\text{range} \partial f(a) \sim \{0\} \subset \Tan_{f(a)}(f[A]).
\]

Proof. Suppose \(v \in X \) and \(w = \partial f(a)(v) \neq 0 \). Let \(\epsilon > 0 \) and choose \(\eta \) such that \(0 < |v|\eta < |w| \) and \(\frac{|v|}{|w| - |v|\eta} \leq \epsilon |v| \). Choose \(\delta > 0 \) such that
\[
x \in A \cap B_\delta(0) \Rightarrow |f(x) - f(a) - \partial f(a)(x-a)| \leq \eta|x-a|.
\]
If \(t > 0 \) and \(t|v| \leq \delta \) we have \(|f(a+tv) - f(a) - tw| \leq \eta|v| \) so \(|f(a+tv) - f(a)| \geq t(|v| - \eta|v|) \). Consequently,
\[
|f(a+tv) - f(a) - tw| \leq \frac{t\eta|v|}{w}|f(a+tv) - f(a)| \leq \frac{\eta|v|}{|w| - \eta|v|} |f(a+tv) - f(a)| \leq \epsilon |f(a+tv) - f(a)|.
\]
The Theorem now follows from a previous Proposition. \(\square \)

Theorem. Suppose \(X \) and \(Y \) are normed spaces, \(X \) is finite dimensional, \(A \) is an open subset of \(X \), \(f \) is differentiable at each point of \(A \) and \(b \in \text{range} \ f \).

Suppose, additionally, that

(i) \(\ker \partial f(a) = \{0\} \) whenever \(a \in A \) and \(f(a) = b \);

(ii) there is \(s > 0 \) such that \(f^{-1}[B_s(b)] \) is a compact subset of \(A \).

Then \(b \in \text{acc} \text{range} \ f \), \(\{a \in A : f(a) = b\} \) is finite and

\[
(1) \quad \Tan_b(\text{range} \ f) = \bigcup \{\text{range} \partial f(a) : a \in A \text{ and } f(a) = b\}.
\]

Proof. We have already shown that the right hand side of (1) is a subset of the left hand side. So suppose \(w \in \Tan_b(\text{range} \ f) \), \(|w| = 1 \) and \(\epsilon > 0 \). We will obtain \(a \in A \) and \(v \in X \) such that \(f(a) = b \) and \(|w - \partial f(a)(v)| \leq \epsilon \). This will show that \(w \) is a point of the closure of the range of \(\partial f(a) \). Since \(X \) is finite dimensional, the range of \(\partial f(a) \) is closed so the proof will be complete.
Let \(K = \{ a \in A : f(a) = b \} \). \(K \) is closed relative to \(A \) because \(f \) is continuous. Since \(K \) is a subset of the compact set \(f^{-1}[B_b(s)] \) we infer that \(K \) is compact. For each \(a \in K \) choose \(m_a, M_a \) such that \(0 < m_a \leq M_a < \infty \) and

\[
m_a |v| < |\partial f(a)(v)| < M_a |v| \quad \text{whenever} \ v \in X \sim \{0\};
\]

this is possible because \(X \) is finite dimensional and \(\ker \partial f(a) = \{0\} \). For any \(a, x \in A \) we have

\[
|f(x) - f(a)| - |\partial f(a)(x - a)| \leq |f(x) - f(a) - \partial f(a)(x - a)|;
\]

it follows that for each \(a \in K \) there is \(\rho_a > 0 \) such that \(B_a(\rho_a) \subset X \) and

\[
m_a |x - a| \leq |f(x) - f(a)| \leq M_a |x - a| \quad \text{whenever} \ x \in B_{\rho_a}(a).
\]

In particular, \(f(x) \neq f(a) \) for any \(a \in K \) and any \(x \in B_a(\rho_a) \). As \(K \) is compact, we infer that that \(K \) is finite. Let \(\rho > 0 \) be such that \(\rho < \rho_a \) for \(a \in K \) and

\[
(2) \quad \frac{1}{m_a} \frac{|f(x) - f(a) - \partial f(a)(x - a)|}{|x - a|} \leq \frac{\epsilon}{2} \quad \text{whenever} \ x \in B_a(\rho).
\]

Let \(F_\sigma = f^{-1}[B_{\sigma}(b)] \) for \(0 < \sigma \leq s \) and note that \(F_\sigma \) is closed relative to \(A \) because \(f \) is continuous. Now \(\{ F_\sigma : 0 < \sigma \leq s \} \) is a nested family of closed subsets of the compact set \(F_s \) with intersection \(K \). It follows that there is \(\sigma \) such that \(0 < \sigma \leq s \) and \(F_\sigma \subset \cup \{ B_a(\rho) : a \in A \} \). Since \(w \in \text{Tan}_b(\text{rng} f) \) we may choose \(y \in \text{rng} f \cap (F_\sigma \sim \{b\}) \) such that

\[
|\frac{1}{|y - b|}(y - b) - w| \leq \frac{\epsilon}{2}.
\]

Let \(a \in A \) and \(x \in B_b(\rho_a) \) be such that \(y = f(x) \). Then

\[
|w - \partial f(a)(\frac{1}{|y - b|}(x - a))| = |w - \frac{1}{|y - b|}(y - b) + \frac{1}{|f(x) - f(a)|}(f(x) - f(a) - \partial f(a)(x - a))|
\]

\[
\leq |w - \frac{1}{|y - b|}(y - b)| + \frac{|f(x) - f(a) - \partial f(a)(x - a)|}{|x - a|} \frac{|x - a|}{|f(x) - f(a)|} \leq \epsilon.
\]

\(\square \)

Theorem. Suppose \(X \) and \(Y \) are finite dimensional normed spaces, \(A \subset X, a \in \text{int} A, \)

\[
f : A \rightarrow Y
\]

and \(f \) is continuous at \(a \). Then \(f \) is differentiable at \(a \) if and only if

\[
\text{Tan}_{(a,f(a))}(f)
\]

is a linear function from \(X \) to \(Y \) in which case

\[
\text{Tan}_{(a,f(a))}(f) = \partial f(a).
\]

Proof. Suppose \(f \) is differentiable at \(a \). Let \(F(x) = (x, f(x)) \) for \(x \in A \); note that \(F \) is differentiable at \(a \) and that \(\partial F(a)(v) = (v, \partial f(a)) \) whenever \(v \in X \). We may apply the previous Theorem with \(b \) and \(f \) there replaced by \((a, b) \) and \(F \), respectively, to deduce that \(\text{Tan}_{(a,f(a))}(f) = \partial f(a) \).

On the other hand, suppose that \(L = \text{Tan}_{(a,f(a))}(f) \) is a linear function from \(X \) to \(Y \). Keeping in mind that all norms on a finite dimensional vector space are equivalent, we may suppose \(||(x, y)|| = |x| + |y| \) for \((x, y) \in X \times Y \). We may suppose without loss of generality that \(a = 0 \) and \(f(a) = 0 \).
Let $\epsilon > 0$ and choose $\eta > 0$ such that $\eta(1 + ||L||) < 1$, $\frac{1 + ||L||}{1 - \frac{1}{1 + ||L||}} \eta \leq 2$ and

$$(1 + ||L||)3\eta \leq \epsilon.$$

Choose $\zeta > 0$ such that if $(x, y) \in f \cap B_0(\zeta)$ then

$$\text{dist}((x, y), L) < \eta|(x, y)|.$$

Finally, using the fact that f is continuous at 0, choose $\delta > 0$ such that if $x \in B_0(\delta)$ then $x \in A$ and $|(x, f(x))| \leq \zeta$.

Suppose $x \in B_0(\delta)$ and let $y = f(x)$. Then $(x, y) \in f \cap B_0(\zeta)$ so

$$\text{dist}((x, y), L) < \eta|(x, y)|.$$

We may choose $v \in X$ such that $|(x, y) - (v, L(v))| < \eta(x, y)$ so $|x - v| + |y - L(v)| \leq |x| + |y|$. Thus

$$|y| \leq |y - L(v)| + |L(v-x)| + |L(x)| \leq (1 + ||L||)(|x - v| + |y - L(v)|) + ||L|||x| \leq (1 + ||L||)\eta(|x| + |y|) + ||L|||x|$$

so

$$(1 - (1 + ||L||)\eta)|y| \leq (1 + (1 + ||L||)\eta)|x|$$

so $|y| \leq 2|x|$. It follows that

$$|y - L(x)| \leq |y - L(v)| + ||L|||x - v| \leq (1 + ||L||)\eta(|x| + |y|) \leq (1 + ||L||)3\eta|x| \leq \epsilon|x|.$$

Thus f is differentiable at $a = 0$ and its differential is L. □

Theorem. Suppose X is a normed vector space, U is an open subset of X,

$$f : U \to \mathbb{R},$$

$a \in \text{acc } A$ and f is differentiable at a.

If $f(x) \leq f(a)$ for $x \in A$ then $\partial f(a) \in \text{Nor}_a(A)$.

If $f(x) \geq f(a)$ for $x \in A$ then $-\partial f(a) \in \text{Nor}_a(A)$.

Proof. Exercise. □

Now suppose X is an inner product space. In this case, as we indicated before, we set

$$\text{Nor}_a(A) = \{w \in X : v \cdot w \leq 0 \text{ whenever } v \in \text{Tan}_a(A)\}.$$

Note the the polarity of the inner product carries the present normal cone to the former normal cone.

Definition. The gradient. Suppose $A \subset X$, $f : A \to \mathbb{R}$, and f is differentiable at a. We let

$$\nabla f(a),$$

the gradient of f at a, be the counter image of $\partial f(a)$ under the polarity of the inner product; that is, $\nabla f(a)$ is the unique vector in X satisfying

$$\partial f(a)(v) = v \cdot \nabla f(a), \quad v \in X.$$

In this situation the conclusion of the previous Theorem becomes

If $f(x) \leq f(a)$ for $x \in A$ then $\nabla f(a) \in \text{Nor}_a(A)$.

If $f(x) \geq f(a)$ for $x \in A$ then $-\nabla f(a) \in \text{Nor}_a(A)$.

4