1. Integration theory, Part Two.

1.1. The Monotone Convergence Theorem. The following Theorem is fundamental.

Theorem 1.1. (The Monotone Convergence Theorem). Suppose f is a non-decreasing sequence in \mathcal{F}_n^+. Then

$$I(\sup_{\nu} f_{\nu}) = \sup_{\nu} I(f_{\nu}).$$

Proof. Let a and b be the left and right hand sides of (1), respectively. Owing to the monotonicity of I, we find that $b \leq a$. Thus we need only show that $a \leq b$ and we may assume that $b < \infty$.

To this end, let $\epsilon > 0$. For each $\nu \in \mathbb{N}$ let $s_{\nu} \in S_{n,1}^+$ be such that $f_{\nu} \leq \sup s_{\nu}$ and

$$I_{n,1}^+(s_{\nu}) \leq I(f_{\nu}) + 2^{-\nu-1} \epsilon.$$

For each $\mu, \nu \in \mathbb{N}$ with $\mu \leq \nu$ we let

$$S_{\mu}^\nu = \bigvee_{n=\mu}^{\nu} s_n \in I_{n,1}^+.$$

We define the sequence t by letting

$$t_{\nu} = (S_{\nu}^0)_{\nu} \in S_{n}^+.$$

For any $\nu \in \mathbb{N}$ we have

$$t_{\nu} = (S_{\nu}^0)_{\nu} \leq (S_{0}^{\nu+1})_{\nu} \leq (S_{0}^{\nu+1})_{\nu+1} = t_{\nu+1}$$

so $t \in S_{n,1}^+$ and

$$I_{n,1}^+(t_{\nu}) = I_{n,1}^+((S_{0}^\nu)_{\nu}) \leq I_{n,1}^+(S_{0}^\nu).$$

Moreover, for any $\nu, \xi \in \mathbb{N}$, we have

$$(s_{\nu})_{\nu} \leq (s_{\nu})_{\nu \vee \xi} \leq (S_{0}^{\nu} \vee \xi)_{\nu \vee \xi} = (S_{0}^{\nu} \vee \xi)_{\nu \vee \xi} \leq \sup t;$$

it follows that $f_{\nu} \leq \sup t$ for any $\nu \in \mathbb{N}$ which in turn implies that $\sup f \leq \sup t$ so

$$I(\sup f) \leq I_{n,1}^+(t).$$

We will complete the proof by showing that

$$I_{n,1}^+(t) \leq \sup_{\nu} I(f_{\nu}) + \epsilon.$$

Suppose $\mu, \nu \in \mathbb{N}$ and $\mu < \nu$. Since $s_{\mu} \leq S_{\mu}^\nu$ we have

$$f_{\mu} \leq f_{\nu} \wedge f_{\nu+1} \leq (\sup s_{\nu}) \wedge (\sup S_{\mu+1}^\nu) = \sup(s_{\nu} \wedge S_{\mu+1}^\nu).$$

Using the fact that $a \wedge b = a + b$ whenever $a, b \in [0, \infty]$ we find that

$$s_{\mu} \wedge S_{\mu+1}^\nu + S_{\mu}^\nu = s_{\mu} \wedge S_{\mu+1} + s_{\mu} \vee S_{\mu+1}^\nu = s_{\mu} + S_{\mu+1}^\nu.$$
thus
\[
I(f_\mu) + I_{n,1}^+(S_{\mu}^\nu) \leq I_{n,1}^+(s_\mu \land S_{\mu+1}^n) + I_{n,1}^+(S_{\mu}^\nu)
\]

\[
= I_{n,1}^+(s_\mu \land S_{\mu+1}^n + S_{\mu}^\nu)
\]

\[
= I_{n,1}^+(s_\mu + S_{\mu+1}^n)
\]

\[
= I_{n,1}^+(s_\mu) + I_{n,1}^+(S_{\mu+1}^n)
\]

\[
\leq I(f_\mu) + 2^{-\mu-1} \epsilon + I_{n,1}^+(S_{\mu+1}^n).
\]

Since \(I(f_\mu) < \infty\) we obtain
\[
I_{n,1}^+(S_{\mu}^\nu) \leq I_{n,1}^+(S_{\mu+1}^n) + 2^{-\mu-1} \epsilon;
\]

Summing from \(\mu = 0\) to \(\nu\) and using (1) we find that
\[
I_{n}^+(t_\nu) \leq I_{n,1}^+(S_{\nu}^n) \leq I_{n,1}^+(S_{\nu}^\nu) + \epsilon = I_{n,1}^+(s_\nu) + \epsilon < I(f_\nu) + \epsilon^{-\nu-1} + \epsilon
\]

thereby establishing (2).

\[\square\]

Corollary 1.1. (Fatou’s Lemma.) Suppose \(f\) is a sequence in \(\mathcal{F}_n^+\). Then
\[
I(\liminf_{\nu} f_\nu) \leq \liminf_{\nu} I(f_\nu).
\]

Proof. Let \(F_\nu = \inf_{0 \leq \mu \leq \nu} f_\mu\) for each \(\nu \in \mathbb{N}\) and apply the Monotone Convergence Theorem to \(F\).

\[\square\]

1.2. Basic theory of Lebesgue integration.

Theorem 1.2. Suppose \(f \in \mathcal{F}_n^+ \cap \text{Leb}_n\). Then
\[
I(f) = L(f).
\]

Proof. Let \(\epsilon > 0\). By a previous Proposition there is \(s \in \mathcal{S}_n^+\) such that \(I(f-s) < \epsilon/2\).
Since \(I(s) = I_n(s) = L(s)\) it follows that
\[
|I(f) - L(f)| \leq |I(f) - I(s)| + |L(f-s)| \leq 2I(|f-s|) \leq \epsilon.
\]

Thus (ii) holds.

\[\square\]

Lemma 1.1. Suppose \(f\) is a sequence in \(\mathcal{F}_n^+ \cap \text{Leb}_n\) such that

(i) \(\sup_{\nu} f_\nu(x) < \infty\) for each \(x \in \mathbb{R}^n\) and

(ii) \(I(\sup_{\nu} f_\nu) \leq \infty\).

Then \(\sup_{\nu} f_\nu \in \text{Leb}_n\).

Proof. Replacing \(f_\nu\) by \(\sup_{0 \leq \mu \leq \nu} f_\mu\) if necessary we may assume without loss of generality that \(f\) is nondecreasing.

Let \(\epsilon > 0\). Since (ii) holds we may choose \(N \in \mathbb{N}\) such that
\[
\sup_{\nu} I(f_\nu) \leq I(f_N) + \epsilon.
\]

It follows from the preceding Proposition that
\[
I(f_\nu - f_N) = L(f_\nu - f_N) = L(f_\nu) - L(f_N) = I(f_\nu) - I(f_N)
\]

for any \(\nu \in \mathbb{N}\) so that
\[
\sup_{\nu} I(f_\nu - f_N) \leq \epsilon.
\]
Since f is nondecreasing we may use the Monotone Convergence Theorem to infer that
\[l(\sup_{\nu} f_{\nu}) - f_N = l(\sup_{\nu} (f_{\nu} - f_N)) = \sup_{\nu} l(f_{\nu} - f_N) \leq \epsilon. \]
\[\square \]

Lemma 1.2. Suppose f is a sequence in $\mathcal{F}_n^+ \cap \text{Leb}_n$. Then $\inf_{\nu} f_{\nu} \in \text{Leb}_n$.

Proof. For each $\nu \in \mathbb{N}$ let $F_{\nu} = \inf_{0 \leq \mu \leq \nu} f_{\mu} \in \text{Leb}_n$. Evidently, F is nonincreasing so $\mathbb{N} \ni \nu \mapsto F_0 - F_{\nu}$ is nondecreasing. Since
\[\inf_{\nu} F_{\nu} = F_0 - \sup_{\nu} (F_0 - F_{\nu}) \]
and since $\inf_{\nu} f_{\nu} = \inf_{\nu} F_{\nu}$ this Lemma follows from Lemma 1.2. \[\square \]

Theorem 1.3. Suppose $F \in \mathcal{F}_n^+ \cap \text{Leb}_n$ and $l(F) < \infty$ and there is a sequence f in Leb_n such that
\[F(x) = \lim_{\nu \to \infty} f_{\nu}(x) \quad \text{for} \quad x \in \mathbb{R}^n. \]
Then $F \in \text{Leb}_n$.

Proof. Choose a $s \in \mathcal{S}_{n,1}^+$ such that $F \leq \sup s$ and $I_{n,1}^+(s) < \infty$. Using the Lemmas 1.1 and 1.2 we infer that, for each $\xi \in \mathbb{N}$,
\[F \land s_\xi = \inf_{\nu \geq \nu} f_{\mu} \land s_\xi \in \text{Leb}_n. \]
Since $F = \sup_\xi F \land s_\xi$ the Theorem follows from the Lemma 1.1. \[\square \]

Theorem 1.4. (The Lebesgue Dominated Convergence Theorem.) Suppose
\begin{enumerate}
 \item f is a sequence in Leb_n and $F \in \mathcal{F}_n$ is such that
 \[\lim_{\nu \to \infty} f_{\nu}(x) = F(x) \quad \text{for all} \quad x \in \mathbb{R}^n; \]
 \item g is a sequence in Leb_n such that
 \[|f_{\nu}| \leq g_{\nu}, \quad \nu \in \mathbb{N}; \]
 \item $G \in \mathcal{F}_n$,
 \[\lim_{\nu \to \infty} g_{\nu}(x) = G(x) \quad \text{for all} \quad x \in \mathbb{R}^n \quad \text{and} \quad \lim_{\nu \to \infty} l(g_{\nu}) = l(G) < \infty. \]
\end{enumerate}
Then $F \in \text{Leb}_n$ and
\[\lim_{\nu \to \infty} l(|F - f_{\nu}|) = 0. \]

Proof. For each $\nu \in \mathbb{N}$ let $h_{\nu} = G + g_{\nu} - |F - f_{\nu}| \in \mathcal{F}_n^+ \cap \text{Leb}_n$. We know from the previous Theorem that G and $|F - f_{\nu}| = \lim_{\mu \to \infty} |f_{\mu} - f_{\nu}|$, $\nu \in \mathbb{N}$ are in Leb_n. Thus, for any $\nu \in \mathbb{N}$,
\[L(h_{\nu}) = L(G) + L(g_{\nu}) - L(|F - f_{\nu}|) \]
so
\[l(h_{\nu}) = l(G) + l(g_{\nu}) - l(|F - f_{\nu}|). \]
By Fatou’s Lemma we have
\[2l(G) = l(\lim_{\nu \to \infty} h_{\nu}) \leq \lim inf_{\nu \to \infty} l(h_{\nu}). \]
Since
\[\liminf_{\nu \to \infty} l(h_{\nu}) = 2l(G) - \limsup_{\nu \to \infty} l(|F - f_{\nu}|) \]
it follows that
\[\limsup_{\nu \to \infty} l(|F - f_{\nu}|) = 0. \]
This in turn implies that \(F \in \text{Leb}_n. \) \(\square \)

1.3. Lebesgue measurable sets.

Theorem 1.5. Suppose \(A \) in a nondecreasing sequence of subsets of \(\mathbb{R}^n \). Then
\[|\bigcup_{\nu=0}^{\infty} A_{\nu}|^* = \sup_{\nu} |A_{\nu}|^*. \]

Proof. Since \(l^+(1_B) = |B|^* \) for any subset \(B \) of \(\mathbb{R}^n \) this follows from the Monotone Convergence Theorem. \(\square \)

Theorem 1.6. Suppose \(E \subset \mathbb{R}^n \). The following are equivalent:
(i) \(1_E \in \text{Leb}_n \);
(ii) for each \(\epsilon > 0 \) there is a multirectangle \(M \) such that
\[|(E \sim M) \cup (M \sim E)|^* \leq \epsilon. \]

Proof. Suppose (i) holds and \(\epsilon > 0 \). Choose \(s \in \mathcal{S}_n^+ \) such that \(l(|1_E - s|) \leq \epsilon / 2 \), let \(M = \{ x \in \mathbb{R}^n : s(x) \geq 1/2 \} \) and note that \(M \) is a multirectangle. Since
\[\frac{1}{2} l((E \sim M) \cup (M \sim E)) = \frac{1}{2} |1_E - 1_M| \leq |1_E - s| \]
we find that \(|(E \sim M) \cup (M \sim E)|^* \leq \epsilon. \) Thus (ii) holds.

Suppose (ii) holds and \(\epsilon > 0 \). Then there is a multirectangle \(M \) such that \(l(|1_E - 1_M|) \leq \epsilon. \) Thus \(1_E \in \text{Leb}_n \) since \(1_M \in \mathcal{S}_n. \) \(\square \)

Definition 1.1. We let
\[\text{Leb}_n^+ \]
be the family of functions in \(\mathcal{F}_n^+ \) which are the supremum of a nondecreasing sequence \(\mathcal{F}_n^+ \cap \text{Leb}_n. \)

Theorem 1.7. Suppose \(F, G \in \text{Leb}_n^+ \). Then
\[1^+(F + G) = 1^+(F) + 1^+(G). \]

Proof. Let \(f, g \) be nondecreasing sequences \(\mathcal{F}_n^+ \cap \text{Leb}_n \) with suprema \(F \) and \(G \), respectively. Using the Monotone Convergence Theorem three times we calculate
\[1^+(F + G) = \sup_{\nu} 1^+(f_{\nu} + g_{\nu}) \]
\[= \sup_{\nu} L(f_{\nu} + g_{\nu}) \]
\[= \sup_{\nu} L(f_{\nu}) + L(g_{\nu}) \]
\[= \sup_{\nu} 1^+(f_{\nu}) + 1^+(g_{\nu}) \]
\[= 1^+(f) + 1^+(g). \] \(\square \)
Definition 1.2. We say a subset E of \mathbb{R}^n is Lebesgue measurable if $1_E \in \text{Leb}_n^+$ in which case we let

$$\mathcal{L}^n(E) = 1^+(1_E)$$

and call this nonnegative extended real number the Lebesgue measure of E.

Theorem 1.8. Suppose $E \subset \mathbb{R}^n$. Then E is Lebesgue measurable if for each $\epsilon > 0$ there is a countable family \mathcal{R} of rectangles such that

$$|(E \sim (\cup \mathcal{R}) \cup ((\cup \mathcal{R}) \sim E))|^* \leq \epsilon.$$

Theorem 1.9. The following statements hold.

(i) $\mathcal{M}_n \subset \mathcal{L}_n$.

(ii) $E \in \mathcal{L}_n$ and $|E|^* < \infty$ if and only if for each $\epsilon > 0$ there is a multirectangle M such that

$$|(E \sim M) \cup (M \sim E)|^* \leq \epsilon.$$

(iii) $E \in \mathcal{L}_n$ if and only if there is a nondecreasing sequence F in $\{G \in \mathcal{L}_n : |G|^* < \infty\}$ such that $E = \cup_{\nu=0}^\infty F_{\nu}$.

(iv) If $E, F \in \mathcal{L}_n$ then $E \cup F, E \cap F, E \sim F \in \mathcal{L}_n$ and

$$|E \cup F|^* + |E \cap F|^* = |E|^* + |F|^*.$$

If \mathcal{E} is a countable nonempty family of Lebesgue measurable subsets of \mathbb{R}^n the following assertions hold:

(v) $\cup \mathcal{E}$ and $\cap \mathcal{E}$ are Lebesgue measurable;

(vi) if \mathcal{E} is disjointed then

$$|\cup \mathcal{E}|^* = \sum_{E \in \mathcal{E}} |E|^*;$$

(vii) if \mathcal{E} is nested then

$$|\cup \mathcal{E}|^* = \sup\{|E|^* : E \in \mathcal{E}\};$$

(viii) if \mathcal{E} is nested and $|E|^* < \infty$ for some $E \in \mathcal{E}$ then

$$|\cap \mathcal{E}|^* = \inf\{|E|^* : E \in \mathcal{E}\}.$$

Proof. Exercise for the reader. \square

Remark 1.1. In particular, the Lebesgue measurable subsets of \mathbb{R}^n form a σ-algebra of subsets of \mathbb{R}^n.

Definition 1.3. Suppose $f : \mathbb{R}^n \to \mathbb{R}$. We say f is Lebesgue measurable if $f^{-1}[U] \in \mathcal{L}_n$ whenever U is an open subset \mathbb{R}^n.

Proposition 1.1. Suppose $f : \mathbb{R}^n \to \mathbb{R}$. The following are equivalent.

(i) f is Lebesgue measurable.

(ii) $\{x \in \mathbb{R}^n : f(x) > c\} \in \mathcal{L}_n$ whenever $c \in \mathbb{R}$.

(iii) $\{x \in \mathbb{R}^n : f(x) \geq c\} \in \mathcal{L}_n$ whenever $c \in \mathbb{R}$.

(iv) $\{x \in \mathbb{R}^n : f(x) < c\} \in \mathcal{L}_n$ whenever $c \in \mathbb{R}$.

(v) $\{x \in \mathbb{R}^n : f(x) \leq c\} \in \mathcal{L}_n$ whenever $c \in \mathbb{R}$.

Proof. Since

\[\{ x \in \mathbb{R}^n : f(x) \geq c \} - \cap_{\nu} = 1^\infty \{ x \in \mathbb{R}^n : f(x) > c - \frac{1}{n} \} \]

we see that that (ii) implies (iii). Since

\[\{ x \in \mathbb{R}^n : f(x) < c \} = \mathbb{R}^n \sim \{ x \in \mathbb{R}^n : f(x) \geq c \} \]

we see that (iii) implies (iv). Since

\[\{ x \in \mathbb{R}^n : f(x) \leq c \} = \cap_{\nu=1}^\infty \{ x \in \mathbb{R}^n : f(x) < c + \frac{1}{\nu} \} \]

we see that (iv) implies (v). Since

\[\{ x \in \mathbb{R}^n : f(x) > c \} = \mathbb{R}^n \sim \{ x \in \mathbb{R}^n : f(x) \leq c \} \]

we see that (v) implies (ii). Thus (ii),(iii),(iv) and (v) are equivalent. Since

(i) obviously implies (ii). Suppose (ii) holds. Then, as (iv) holds,

\[\{ x \in \mathbb{R}^n : a < f(x) < b \} \in \mathcal{L}_n \]

whenever \(-\infty < a < b < \infty\).

Let \(U \) be an open subset of \(\mathbb{R} \). Let \(\mathcal{I} \) be the family of open subintervals of \(U \) with rational endpoints. Then, as \(\mathcal{I} \) is countable, we find that

\[f^{-1}[U] = \cup \{ f^{-1}[I] : I \in \mathcal{I} \} \in \mathcal{L}_n \]

. Thus (i) holds. \(\square \)

Corollary 1.2. Suppose \(N \) is a positive integer, \(f_i : \mathbb{R}^n \to \mathbb{R} \), \(i = 1, \ldots, N \) are Lebesgue measurable functions, and

\[M : \mathbb{R}^N \to \mathbb{R} \]

is continuous. Then

\[\mathbb{R}^n \ni x \mapsto M(f_1(x), \ldots, f_N(x)) \]

is Lebesgue measurable.

Corollary 1.3. The set of Lebesgue measurable functions is closed under the arithmetic operation as well as the lattice operations.

Proposition 1.2. Suppose \(f \) is a sequence of Lebesgue measurable functions and \(F : \mathbb{R}^n \to \mathbb{R} \) is such that

\[\lim_{\nu \to \infty} f_\nu(x) = F(x) \]

whenever \(x \in \mathbb{R}^n \).

Then \(F \) is Lebesgue measurable.

Proof. Suppose \(c \in \mathbb{R} \). Then

\[\{ x \in \mathbb{R}^n : F(x) > c \} = \cup_{n=1}^\infty \cup_{N=0}^\infty \cap_{\nu=N}^\infty \{ x \in \mathbb{R}^n : f_\nu(x) > c + \frac{1}{n} \} \]

\(\square \)

Lemma 1.3. Suppose \(f : \mathbb{R}^n \to \mathbb{R} \), \(c \in \mathbb{R} \), \(E = \{ x \in \mathbb{R}^n : f(x) > c \} \) and

\[g_h(x) = \frac{1}{h} [f \land (c + h) - f \land c] \]

for \(h \in (0, \infty) \).

Then

(i) \(g_h \leq g_k \) if \(0 < k < h < \infty \);

(ii) \(1_E = \sup_{0<h<\infty} g_h \).
Proof. To prove (i) we suppose \(a \in \mathbb{R}^n \) and \(0 < k < h < \infty \) and we observe that
\[
\begin{align*}
f(a) < c & \Rightarrow g_k(a) = 0 = g_{k}(a), \\
c \leq f(a) < c + k & \Rightarrow g_k(a) = \frac{1}{k} [f(a) - c] \leq \frac{1}{k} [f(a) - c] = g_{k}(a), \\
c + k \leq f(a) < c + h & \Rightarrow g_k(a) = \frac{1}{h} [f(a) - c] \leq 1 = g_{k}(a), \\
c + h \leq f(a) & \Rightarrow g_k(a) = 1 = g_{k}(a).
\end{align*}
\]

(ii) is evident. \(\square \)

Lemma 1.4. Suppose \(f : \mathbb{R}^n \to \mathbb{R} \); \(c \) is a a sequence of positive real numbers such that
\[
\lim_{\nu \to \infty} c_{\nu} = 0 \quad \text{and} \quad \sum_{\nu=0}^{\infty} c_{\nu} = \infty;
\]
and \(E \) is the sequence of subsets of \(\mathbb{R}^n \) defined inductively by setting \(E_0 = \{ x \in \mathbb{R}^n : f(x) > c_0 \} \) and requiring that
\[
E_{\nu+1} = \{ x \in \mathbb{R}^n : f(x) > \sum_{\mu=0}^{\nu} c_{\mu} \mathbf{1}_{E_{\mu}} \} \quad \text{whenever} \ \nu > 0.
\]
Then
\[
f = \sum_{\nu=0}^{\infty} c_{\nu} \mathbf{1}_{E_{\nu}}.
\]

Proof. Straightforward exercise. \(\square \)

Theorem 1.10. Suppose \(f : \mathbb{R}^n \to \mathbb{R} \). Then \(f \in \text{Leb}_n \) if and only if \(\text{I}(f) < \infty \) and \(f \) is Lebesgue measurable.

Proof. Suppose \(f \in \text{Leb}_n \). Let \(c \in \mathbb{R} \). That \(\{ x \in \mathbb{R}^n : f(x) > c \} \in \mathcal{L}_n \) follows the first of the two preceding Lemmas and our earlier theory.

Suppose \(\text{I}(f) < \infty \) and \(f \) is Lebesgue measurable. Writing \(f = f^+ - f^- \) we see we need only consider the case \(f \geq 0 \). Let \(c \) be a sequence of positive real numbers such that \(\lim_{\nu \to \infty} c_{\nu} = 0 \) and \(\sum_{\nu=0}^{\infty} c_{\nu} = \infty \) and let the sequence \(E \) be as in the preceding Lemma so that
\[
f = \sum_{\nu=0}^{\infty} c_{\nu} \mathbf{1}_{E_{\nu}}.
\]
Note that \(E_{\nu} \in \mathcal{L}_n \). That \(f \in \text{Leb}_n \) follows from earlier theory. \(\square \)

Theorem 1.11. (The absolute continuity of the integral.) Suppose \(f \in \text{Leb}_n \). Then for each \(\epsilon > 0 \) there is \(\delta > 0 \) such that
\[
E \in \mathcal{L}_n \text{ and } |E| < \delta \Rightarrow \text{L}_E(|f|) < \epsilon.
\]

Proof. For each nonnegative integer \(\nu \) let \(g_{\nu} = |f| \wedge \nu \). Since \(g_{\nu} \uparrow |f| \) as \(\nu \uparrow \infty \) we infer from the Monotone Convergence Theorem that \(\text{I}(g_{\nu}) \uparrow \text{I}(|f|) \) as \(\nu \uparrow \infty \). Choose a positive integer \(N \) such that
\[
\text{I}(|f|) - \text{I}(g_N) < \frac{\epsilon}{2}.
\]
By the preceding theory, \(g_N \in \text{Leb}_n \). Let \(\delta = \frac{\epsilon}{2N} \). If \(E \in \mathcal{L}_n \) and \(|E| < \delta \) then

\[
|f|_{1E} = (|f| - g_N)_{1E} + g_N 1_E \leq |f| - g_N + N 1_E
\]

so that

\[
L_E(|f|) = L(|f|_{1E}) \leq L(|f| - g_N + N 1_E) = L(|f|) - L(g_N) + N|E| < \epsilon.
\]

\[\square\]

Theorem 1.12. (Minkowski’s inequality in integral form.) Suppose \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) is Lebesgue measurable and \(1 \leq p < \infty \). Then

\[
\left(\int \left(\int |h(x, y)|^p \, dx \right)^{1/p} \, dy \right)^{1/p} \leq \int \left(\int |h(x, y)|^p \, dx \right)^{1/p} \, dy.
\]

Remark 1.2. We haven’t shown that either of the above integrals is defined because we haven’t done product integration.

Proof. By an approximation argument we need only consider \(h \) of the form

\[
h(x, y) = \sum_{j=1}^{N} f_j(x) 1_{F_j}(y), \quad (x, y) \in \mathbb{R} \times \mathbb{R},
\]

where \(N \) is a positive integer; \(f_j \) is Lebesgue measurable and \(F_j \in \mathcal{L}_n, j = 1, \ldots, N; \) and \(F_i \cap F_j = \emptyset \) if \(1 \leq i < j \leq N \). We use Minkowski’s inequality to estimate

\[
\left(\int \left(\int h(x, y) \, dy \right)^{1/p} \, dx \right)^{1/p} = \left(\int \left(\sum_{j=1}^{N} ||f_j||_{L^p}^p \, dx \right)^{1/p} \right)^{1/p} \leq \sum_{j=1}^{N} ||F_j|| \left(\int |f_j(x)|^p \, dx \right)^{1/p}.
\]

But

\[
\int \left(\int |h(x, y)|^p \, dx \right)^{1/p} \, dy = \sum_{j=1}^{N} \int_{F_j} \left(\int |h(x, y)|^p \, dx \right)^{1/p} = \sum_{j=1}^{N} \int_{F_j} \left(\int |f_j(x)|^p \, dx \right)^{1/p}.
\]

\[\square\]

Corollary 1.4. Suppose \(f \) and \(g \) are Lebesgue measurable. Then

\[
||f \ast g||_p \leq ||f||_p ||g||_1.
\]

Proof. Using Minkowski’s Inequality in integral form we estimate

\[
||f \ast g||_p = \left(\int \left(\int |f(x) - y)g(y) \, dy \right)^{p} \, dx \right)^{1/p} \leq \left(\int \left(\int |f(x) - y)g(y) \, dx \right)^{p} \, dy \right)^{1/p} = \left(\int \left(\int |f(x) \, dx \right)^{p} \, dy \right)^{1/p} ||g||_1.
\]

\[\square\]
Proposition 1.3. Suppose $1 \leq p < \infty$, f is Lebesgue measurable and
\[
\|f\|_p = \left(\int |f(x)|^p \, dx \right)^{1/p} < \infty.
\]
Then for each $\epsilon > 0$ there is an elementary function s such that $\|f - s\|_p < \epsilon$.

Proof. Let $\epsilon > 0$.

For each positive integer ν let $E_\nu = \{x \in \mathbb{R}^n : |f(x)| \leq \nu\}$. Since $1_{E_\nu} |f|^p \uparrow |f|^p$ as $\nu \uparrow \infty$ we infer from the Monotone Convergence Theorem and the additivity of the integral that
\[
\int_{E_\nu} |f(x)|^p \, dx \uparrow \int |f(x)|^p \, dx \quad \text{as} \quad \nu \uparrow \infty.
\]
By the additivity of the integral we infer that
\[
\|f - 1_{E_\nu} f\|_p^p = \int_{\mathbb{R}^n \sim E_\nu} |f(x)|^p \, dx = \int |f(x)|^p \, dx - \int_{E_\nu} |f(x)|^p \, dx \downarrow 0 \quad \text{as} \quad \nu \uparrow \infty.
\]
We may therefore choose a positive integer N such that $\|f - 1_{E_N} f\|_p \leq \epsilon/2$. Since $f 1_{E_N} \in \text{Leb}_1$ we may choose an elementary function s such that $|s| \leq M$ and
\[
(2M)^p \int |f 1_{E_N} - s|(x) \, dx \leq \left(\frac{\epsilon}{2}\right)^p.
\]
Then
\[
\|f 1_{E_N} - s\|_p^p = \int |f 1_{E_N} - s|^p \, dx \leq (2M)^p \int |f 1_{E_N} - s| \, dx \leq \left(\frac{\epsilon}{2}\right)^p.
\]
It follows from Minkowski's Inequality that
\[
\|f - s\|_p \leq \|f - 1_{E_N} f\|_p + \|1_{E_N} f - s\|_p \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

1.3.1. Smoothing. Let
\[
\phi : \mathbb{R}^n \rightarrow \mathbb{R}
\]
be a smooth function such that
\begin{enumerate}
 \item $0 \leq \phi$;
 \item $\{x \in \mathbb{R}^n : \phi(x) \neq 0\} \subset \{x \in \mathbb{R}^n : |x| < 1\}$;
 \item $\int \phi(x) \, dx = 1$.
\end{enumerate}
For each $\epsilon > 0$ we let
\[
\phi_\epsilon(x) = \frac{1}{\epsilon^n} \phi\left(\frac{x}{\epsilon}\right) \quad \text{for} \quad x \in \mathbb{R}^n.
\]
Then
\begin{enumerate}
 \item $0 \leq \phi_\epsilon$;
 \item $\{x \in \mathbb{R}^n : \phi_\epsilon(x) \neq 0\} \subset \{x \in \mathbb{R}^n : |x| < \epsilon\}$;
 \item $\int \phi_\epsilon(x) \, dx = 1$.
\end{enumerate}

Theorem 1.13. Suppose $1 \leq p < \infty$ and f is measurable and
\[
\int |f(x)|^p \, dx < \infty.
\]
Then $\phi_\epsilon * f$ is smooth and
\[
\|f - \phi_\epsilon * f\|_p \rightarrow 0 \quad \text{as} \quad \epsilon \downarrow 0.
\]
Proof. Let $\eta > 0$ and let s be a elementary function such that $\|f - s\|_p < \eta/3$. Then

$$\|f - \phi * f\|_p \leq \|f - s\|_p + \|s - \phi * s\|_p + \|\phi * (f - s)\|_p 2\eta + \|s - \phi * s\|_p.$$

Finally, as s is elementary, $\|s - \phi * s\|_p \rightarrow 0$ as $\epsilon \downarrow 0$. (Do you see why?) \square