Hermitian inner products.

Suppose V is vector space over \mathbb{C} and (\cdot, \cdot) is a Hermitian inner product on V. This means, by definition, that

$$(\cdot, \cdot) : V \times V \to \mathbb{C}$$

and that the following four conditions hold:

(i) $(v_1 + v_2, w) = (v_1, w) + (v_2, w)$ whenever $v_1, v_2, w \in V$;

(ii) $(cv, w) = c(v, w)$ whenever $c \in \mathbb{C}$ and $v, w \in V$;

(iii) $(w, v) = \overline{(v, w)}$ whenever $v, w \in V$;

(iv) (v, v) is a positive real number for any $v \in V \sim \{0\}$.

These conditions imply that

(v) $(v, w_1 + w_2) = (v, w_1) + (v, w_2)$ whenever $v, w_1, w_2 \in V$;

(vi) $(v, cw) = \overline{c}(v, w)$ whenever $c \in \mathbb{C}$ and $v, w \in V$;

(vii) $(0, v) = 0 = (v, 0)$ for any $v \in V$.

In view of (iv) and (vii) we may set

$$||v|| = \sqrt{(v, v)} \quad \text{for } v \in V$$

and note that

(viii) $||v|| = 0 \iff v = 0$.

We call $||v||$ the norm of v. Note that

(ix) $||cv|| = ||c|| ||v||$ whenever $c \in \mathbb{C}$ and $v \in V$.

Suppose

$$A : V \times V \to \mathbb{R} \quad \text{and} \quad B : V \times V \to \mathbb{R}$$

are such that

$$(1) \quad (v, w) = A(v, w) + iB(v, w) \quad \text{whenever } v, w \in V.$$

One easily verifies that

(i) A and B are bilinear over \mathbb{R};

(ii) A is symmetric and positive definite;

(iii) B is antisymmetric;

(iv) $A(iv, iw) = A(v, w)$ whenever $v, w \in V$;
(v) \(B(v, w) = -A(iv, w) \) whenever \(v, w \in V \).

Conversely, given \(A : V \times V \to \mathbb{R} \) which is bilinear over \(\mathbb{R} \) and which is positive definite symmetric, letting \(B \) be as in (v) and let \((\cdot, \cdot) \) be as in (1) we find that \((\cdot, \cdot) \) is a Hermitian inner product on \(V \). The interested reader might write down conditions on \(B \) which allow one to construct \(A \) and \((\cdot, \cdot) \) as well.

Example 0.1. Let

\[
(z, w) = \sum_{j=1}^{n} z_j \overline{w_j} \quad \text{for } z, w \in \mathbb{C}^n.
\]

The \((\cdot, \cdot) \) is easily seen to be a Hermitian inner product, called the **standard (Hermitian) inner product**, on \(\mathbb{C}^n \).

Example 0.2. Suppose \(-\infty < a < b < \infty \) and \(\mathcal{H} \) is the vector space of complex valued square integrable functions on \([a, b] \). You may object that I haven’t told you what “square integrable” means. Now I will. Sort of. To say \(f : [a, b] \to \mathbb{R} \) is **square integrable** means that \(f \) is Lebesgue measurable and that

\[
\int_a^b |f(x)|^2 \, dx < \infty;
\]

of course I haven’t told you what “Lebesgue measurable” means and I haven’t told you what \(\int_a^b \) means, but I will in the very near future. For the time being just think of whatever notion of integration you’re familiar with.

Note that

\[
\int_a^b f(x) \, dx = \int_a^b \Re f(x) \, dx + i \int_a^b \Im f(x) \, dx
\]

whenever \(f \in \mathcal{H} \).

Let

\[
(f, g) = \int_a^b f(x) \overline{g(x)} \, dx \quad \text{whenever } f, g \in \mathcal{H}.
\]

You should object at this point that the integral may not exist. We will show shortly that it does. One easily verifies that (i)-(iii) of the properties of an inner product hold and that (iv) **almost** holds in the sense that for any \(f \in \mathcal{F} \) we have

\[
(f, f) = \int_a^b |f(x)|^2 \, dx \geq 0
\]

with equality only if \(\{ x \in [a, b] : f(x) = 0 \} \) has zero Lebesgue measure (whatever that means). In particular, if \(f \) is continuous and \((f, f) = 0 \) then \(f(x) = 0 \) for all \(x \in [a, b] \).

This Example is like Example One in that one can think of \(f \in \mathcal{H} \) as a an infinite-tuple with the continuous index \(x \in [a, b] \).

Henceforth \(V \) is a Hermitian inner product space.

The following simple Proposition is indispensable.

Proposition 0.1. Suppose \(v, w \in V \). Then

\[
\|v + w\|^2 = \|v\|^2 + 2\Re(v, w) + \|w\|^2.
\]
Proof. We have
\[\|v + w\|^2 = (v + w, v + w) \]
\[= (v, v) + (v, w) + (w, v) + (w, w) \]
\[= (v, v) + (v, w) + (w, v) + (w, w) \]
\[= \|v\|^2 + 2\Re(v, w) + \|w\|^2. \]

Corollary 0.1 (The Parallelogram Law). We have
\[\|v + w\|^2 + \|v - w\|^2 = 2(\|v\|^2 + \|w\|^2) . \]

Proof. Look at it.

Here is an absolutely fundamental consequence of the Parallelogram Law.

Theorem 0.1. Suppose V is complete with respect to $\| \cdot \|$ and C is a nonempty closed convex subset of V. Then there is a unique point $c \in C$ such that
\[\|c\| \leq \|v\| \quad \text{whenever } v \in C. \]

Remark 0.1. Draw a picture.

Proof. Let
\[d = \inf\{\|v\| : v \in C\} \]
and let
\[\mathcal{C} = \{C \cap B^d(r) : d < r < \infty\}. \]

Note that \mathcal{C} is a nonempty nested family of nonempty closed subsets of V.

Suppose $C \in \mathcal{C}$, $d < r < \infty$ and $v, w \in C$. Because C is convex we have
\[\frac{1}{2}(v + w) \in C \cap B^d(R) \]
so
\[\frac{1}{4}\|v + w\|^2 = \frac{1}{2}(v + w))^2 \geq d^2. \]

Thus, by the Parallelogram Law,
\[\frac{1}{4}\|v - w\|^2 = \frac{1}{2} (\|v\|^2 + \|w\|^2) - \frac{1}{4}\|v + w\|^2 \leq r^2 - d^2. \]

It follows that
\[\inf\{\text{diam}C \cap B^d(r) : d < r < \infty\} = 0. \]

By completeness there is a point $c \in V$ such that
\[\{c\} = \cap \mathcal{C}. \]

\[\square \]

Corollary 0.2. Suppose U is a closed linear subspace of V and $v \in V$. Then there is a unique $u \in U$ such that
\[\|v - u\| \leq \|v - u'\| \quad \text{whenever } u' \in U. \]

Remark 0.2. Draw a picture.

Remark 0.3. We will show very shortly that any finite dimensional subspace of V is closed.
Proof. Let $C = v - U$ and note that C is a nonempty closed convex subset of V. (Of course $-U = U$ since U is a linear subspace of U, but this representation of C is more convenient for our purposes.) By virtue of the preceding Theorem there is a unique $u \in U$ such that

$$||v - u|| \leq ||v - u'||$$ whenever $u' \in U$.

\[\square\]

Theorem 0.2 (The Cauchy-Schwartz Inequality.). Suppose $v, w \in V$. Then

$$(v, w) \leq ||v|| ||w||$$

with equality only if $\{v, w\}$ is dependent.

Proof. If $w = 0$ the assertion holds trivially so let us suppose $w \neq 0$. For any $c \in \mathbb{C}$ we have

$$0 \leq ||v + cw||^2 = ||v||^2 + 2\Re(v, cw) + ||cw||^2 = ||v||^2 + 2\Re(v, w) + |c|^2 ||w||^2.$$

Letting

$$c = \frac{(v, w)}{||w||^2}$$

we find that

$$0 \leq ||v||^2 - \frac{(v, w)^2}{||w||^2}$$

with equality only if $||v + cw|| = 0$ in which case $v + cw = 0$ so $v = -cw$. \[\square\]

Corollary 0.3. Suppose a and b are sequences of complex numbers. Then

$$\sum_{n=0}^{\infty} |a_n b_n| \leq \left(\sum_{n=0}^{\infty} |a_n|^2 \right)^{1/2} \left(\sum_{n=0}^{\infty} |b_n|^2 \right)^{1/2}.$$

Proof. For any nonnegative integer N apply the Cauchy-Schwartz inequality with (\cdot, \cdot) equal the standard inner product on \mathbb{C}^N,

$$v = (a_0, \ldots, a_N) \quad \text{and} \quad w = (b_0, \ldots, b_N)$$

and then let $N \to \infty$. \[\square\]

Theorem 0.3 (The Triangle Inequality.). Suppose $v, w \in V$. Then

$$||v + w|| \leq ||v|| + ||w||$$

with equality only if either v is a nonnegative multiple of w or w is a nonnegative multiple of v.

Proof. Using the Cauchy-Schwartz Inequality we find that

$$||v + w||^2 = ||v||^2 + 2\Re(v, w) + ||w||^2 \leq ||v||^2 + 2||v|| ||w|| + ||w||^2 = (||v|| + ||w||)^2.$$

Suppose equality holds. In case $v = 0$ then $v = 0w$ so suppose $v \neq 0$. Since $|(v, w)| \geq \Re(v, w) = ||v|| ||w||$ we infer from the Cauchy-Schwartz Inequality that $w = cw$ for some $c \in \mathbb{C}$. Thus

$$|1 + c||v|| = ||(1 + c)v|| = ||v + cw|| = ||v|| + ||cw|| = (1 + |c|)||v||$$
from which we infer that
\[1 + 2\Re c + |c|^2 = |1 + c|^2 = (1 + |c|)^2 = 1 + 2|c| + |c|^2 \]
which implies that \(c \) is a nonnegative real number. \(\square \)

Definition 0.1. Suppose \(U \) is a linear subspace of \(V \). We let
\[U^\perp = \{ v \in V : (u, v) = 0 \text{ for all } u \in U \} \]
and note that \(U^\perp \) is a linear subspace of \(V \). It follows directly from (iv) that
\[U \cap U^\perp = \{ 0 \} \]

Proposition 0.2. Suppose \(U \) is a linear subspace of \(V \). Then
\[U \subset U^{\perp \perp} \]
and \(U^\perp \) is closed.

Proof. The first assertion is an immediate consequence of the definition of \(U^\perp \). The second follows because \(U^\perp \) is the intersection of the closed sets
\[\{ v \in V : (u, v) = 0 \} \]
corresponding to \(u \in U \); These sets are closed because \(V \ni v \mapsto (u, v) \) is continuous by virtue of the Cauchy-Schwartz Inequality. \(\square \)

Orthogonal projections.

Henceforth \(U \) is closed linear subspace of \(V \).

Definition 0.2. Keeping in mind the foregoing, we define
\[P : V \to U \]
by requiring that
\[||v - Pv|| \leq ||v - u'|| \quad \text{whenever } u' \in U. \]

That is, \(Pv \) is the closest point in \(U \) to \(v \). We call \(P \) **orthogonal projection** of \(V \) **onto** \(U \). Note that \(Pu = u \) whenever \(u \in U \). Thus
\[\text{rng } P = U \quad \text{and} \quad P \circ P = P. \]

Keeping in mind that \(U^\perp \) is a closed linear subspace of \(V \) we let
\[P^{\perp} \]
be orthogonal projection of \(V \) onto \(U^\perp \).

Theorem 0.4. Suppose \(W \) is a linear subspace of \(V \) and
\[Q : V \to W \]
is such that
\[||w - Qv|| \leq ||v - w|| \quad \text{whenever } v \in V \text{ and } w \in W. \]
Then \(W \) is closed and \(Q \) is orthogonal projection of \(V \) onto \(W \).
Proof. Suppose \(\tilde{w} \in \text{cl}W \) and \(\epsilon > 0 \). Choose \(w \in W \) such that \(||\tilde{w} - w|| \leq \epsilon \). Then

\[
||\tilde{w} - Q\tilde{w}|| \leq ||\tilde{w} - w|| \leq \epsilon.
\]

Owing to the arbitrariness of \(\epsilon \) we infer that \(||Q\tilde{w} - w|| = 0 \) so \(w = Q\tilde{w} \in W \) and \(\text{cl}W \subset W \). \(\square \)

Theorem 0.5. We have

\[
u = \Pi v \iff v - u \in U^{\perp} \quad \text{whenever } u \in U \text{ and } v \in V.
\]

Proof. Suppose \(u \in U \) and \(v \in V \). For each \((t, u') \in \mathbb{R} \times U\) let

\[
f(t, u') = ||(v - u) + tu'||^2
\]

and note that

\[
f(t, u') = ||v - u||^2 + 2t\Re(v - u, u') + t^2||u'||^2.
\]

Suppose \(u = \Pi v \). Then \(f(0, u') \leq f(t, u') \) whenever \((t, u') \in \mathbb{R} \times U\). Thus \(v - u \in U^{\perp} \).

Suppose \(v - u \in U^{\perp} \). Then

\[
||v - u||^2 = f(0, u' - u) \leq f(1, u' - u) = ||v - u'||^2
\]

so \(u = \Pi v \). \(\square \)

Corollary 0.4. \(\Pi \) is linear.

Proof. Suppose \(v \in V \) and \(c \in \mathbb{C} \). Then \(c\Pi v = \Pi(cv) \in U^{\perp} \) so \(\Pi(cv) = c\Pi v \). Suppose \(v_1, v_2 \in V \). then \(\Pi v_1 + \Pi v_2 \in U^{\perp} \) and \((v_1 + v_2) - (\Pi v_1 + \Pi v_2) = (v_1 - \Pi v_1) + (v_2 - \Pi v_2) \in U^{\perp} \) so \(\Pi(v_1 + v_2) = \Pi v_1 + \Pi v_2 \). \(\square \)

Corollary 0.5. Suppose \(v \in V \). Then

(i) \(v = \Pi v + \Pi^\perp v \) and

(ii) \(||v||^2 = ||\Pi v||^2 + ||\Pi^\perp v||^2 \).

Proof. We have \(v - \Pi v \in U^{\perp} \) by the preceding Theorem and

\[
v - (v - \Pi v) = \Pi v \in U \subset U^{\perp}
\]

so, again by the preceding Theorem only with \(U \) replaced by \(U^{\perp} \) we find that \(\Pi^\perp v = v - \Pi v \). It follows that

\[
||v||^2 = ||\Pi v + \Pi^\perp v||^2 = ||\Pi v||^2 + 2\Re(\Pi v, \Pi^\perp v) + ||\Pi^\perp v||^2 = ||\Pi v||^2 + ||\Pi^\perp v||^2.
\]

Corollary 0.6. We have

\[
U^{\perp\perp} = U
\]

and

\[
(\Pi v, w) = (v, \Pi w) \quad \text{whenever } v, w \in V.
\]
Proof. Let P and P^\perp be orthogonal projection of V onto U and U^\perp, respectively. By the preceding Theorem with U replaced by U^\perp we find that orthogonal projection of V onto U^\perp carries $v \in V$ to $v - P^\perp v = Pv$. Thus $U = U^\perp$.

Suppose $v, w \in V$. Then

\[(Pv, w) = (Pv, Pw + P^\perp w) = (Pv, Pw) = (Pv + P^\perp v, Pw) = (v, Pw).\]

\[\square\]

Definition 0.3. We say a subset A of V is **orthonormal** if whenever $v, w \in A$ we have

\[(v, w) = \begin{cases} 1 & \text{if } v = w; \\ 0 & \text{if } v \neq w. \end{cases}\]

Exercise 0.1. Show that any orthonormal set is independent.

The Gram-Schmidt Process. Suppose $\tilde{u} \in V \sim U, \tilde{U} = \{u + c\tilde{u} : c \in \mathbb{C}\}$ and

\[\tilde{P}v = Pv + \frac{(v, P^\perp \tilde{u})}{||P^\perp \tilde{u}||^2} P^\perp \tilde{u}\]

whenever $v \in V$.

Then \tilde{U} is closed and \tilde{P} is orthogonal projection on \tilde{U}.

Proof. Easy exercise for the reader. \[\square\]

Remark 0.4. If $U = \{0\}$ then $P = 0$ so

\[\tilde{P}(v) = \frac{(v, \tilde{u})}{||\tilde{u}||^2} \tilde{u}\]

and \tilde{P} is orthogonal projection on the line $\{c\tilde{u} : c \in \mathbb{C}\}$.

Corollary 0.7. Any finite dimensional subspace of V is closed and has an orthonormal basis.

Proof. Induct on the dimension of the subspace and use the Gram-Schmidt Process to carry out the inductive step. \[\square\]

Proposition 0.3. Suppose U is finite dimensional and B is an orthonormal basis for U. Then

\[Pv = \sum_{u \in B} (v, u)u\]

and

\[||Pv||^2 = \sum_{u \in B} |(v, u)|^2\]

whenever $v \in V$.

Proof. Let

\[Lv = \sum_{u \in B} (v, u)u\]

for $v \in V$. \[\square\]
Suppose $v \in V$ and $\tilde{u} \in B$. The
\[
(v - Lv, \tilde{u}) = (v - \sum_{u \in B} (v, u)u, \tilde{u})
= (v, \tilde{u}) - \sum_{u \in B} (v, u)(u, \tilde{u})
= (v, \tilde{u}) - (v, \tilde{u})
= 0
\]
which, as B is a basis for U, implies that $v - Lv \in U^\perp$; thus $P = L$.

Finally, if $v \in V$ we have
\[
||Lv||^2 = (\sum_{u \in B} (v, u)u, \sum_{\tilde{u} \in B} (v, \tilde{u})\tilde{u})
= \sum_{u \in B, \tilde{u} \in B} (v, u)(v, \tilde{u})(u, \tilde{u})
= \sum_{u \in B} |(u, v)|^2.
\]

\[\square\]

Hilbert space.

Let X be a set and let
\[
H_X = \{u \in \mathcal{C}^X : \sum_X |u|^2 < \infty\}.
\]

Proposition 0.4. Suppose $u, v \in H_X$. Then
\[
\sum_X |uv| < \infty.
\]

Proof. Suppose F is a finite subset of X. The Cauchy-Schwartz Inequality implies that
\[
\left(\sum_F |uv|\right)^2 \leq \left(\sum_F |u|^2\right) \left(\sum_F |v|^2\right) \leq \left(\sum_X |u|^2\right) \left(\sum_X |v|^2\right) < \infty.
\]

\[\square\]

Definition 0.4. Keeping in mind the previous Proposition we let
\[
(u, v) = \sum_X u\overline{v} \quad \text{whenever } u, v \in H_X.
\]

One easily verifies that (\cdot, \cdot) is a Hermitian inner product on H_X.

Definition 0.5. For each subset A of X let
\[
H^A
\]

Theorem 0.6. H_X is complete.
Proof. Let \mathcal{C} be a nonempty nested family of nonempty closed subsets of H_X such that $\inf \{\text{diam } C : C \in \mathcal{C} \} = 0$. For each $C \in \mathcal{C}$ let
\[b_C = \sup \{ ||v|| : v \in C \}. \]
By the triangle inequality there are $B \in [0, \infty)$ and $C_0 \in \mathcal{C}$ such that $b_{C_0} \leq B$.

Note that $b_C \leq b_{C_0}$ whenever $C \subseteq \mathcal{C}$ and $C \subseteq C_0$.

For each $x \in X$ let $C_x = \overline{\{ u(x) : u \in C \}}$ for each $C \in \mathcal{C}$, note that
\[\text{diam } C_x \leq \text{diam } C \quad \text{for each } C \in \mathcal{C}, \]
and let
\[\mathcal{C}_x = \{ C_x : C \in \mathcal{C} \}. \]
For each $x \in X$ the family \mathcal{C}_x is a nonempty nested family of nonempty closed subsets of C and $\inf \{\text{diam } C_x : C \in \mathcal{C} \} = 0$. Since C is complete there is one and only one $u \in C^X$ such that
\[u(x) \in \cap \mathcal{C}_x \quad \text{whenever } x \in X. \]

Suppose F is a finite subset of X. Choose $C \in \mathcal{C}$ such that $C \subseteq C_0$ and $|F|\text{diam } C^2 \leq 1$. Suppose $v \in C$. We infer from the Triangle Inequality that
\[\left(\sum_F |u|^2 \right)^{1/2} \leq \left(\sum_F |u - v|^2 \right)^{1/2} + \left(\sum_F |v|^2 \right)^{1/2} \leq \sqrt{|F|} \text{max}\{\text{diam } C_x : x \in F\} + ||v||^2 \leq \sqrt{|F|} \text{max}\{\text{diam } C_x : x \in F\} + ||v||^2 \]
It follows that
\[u \in H_X. \]

Suppose $\epsilon > 0$, and
\[\left(\sum_F |u - v|^2 \right)^{1/2} \leq \left(\sum_F |u - v|^2 \right)^{1/2} + \left(\sum_F |v|^2 \right)^{1/2} \leq \sqrt{|F|} \text{max}\{\text{diam } C_x : x \in F\} + ||v||^2 \]
\[\square \]