The Brouwer Fixed Point Theorem.

Fix a positive integer \(n \) and let \(D^n = \{ x \in \mathbb{R}^n : |x| \leq 1 \} \). Our goal is to prove

The Brouwer Fixed Point Theorem. Suppose

\[
f : D^n \to D^n
\]

is continuous. Then \(f \) has a **fixed point**; that is, there is \(a \in D^n \) such that \(f(a) = a \).

This will follow quickly from the following

Theorem. You can’t retract the ball to its boundary. There exists no continuous retraction

\[
r : D^n \to S^{n-1}.
\]

(We say \(r : X \to Y \) is a retraction if \(Y \subset X \) and \(r(y) = y \) whenever \(y \in Y \).)

Indeed, suppose \(f : D^n \to D^n \) is continuous but has no fixed point. For each \(x \in D^n \) let \(r(x) \) be the point in \(S^{n-1} \) determined by the requirement that

\[
r(x) = f(x) + \lambda(x - f(x))
\]

for some positive real number \(\lambda \). We leave it to the reader to verify that \(r \) would be a continuous retraction of the ball \(D^n \) to its boundary \(S^{n-1} \).

The proof that you can’t retract the ball to its boundary. Suppose, to the contrary, that \(r \) continuously retracts the ball \(D^n \) to its boundary \(S^{n-1} \).

Step One. Choose \(\epsilon \in (0, 1/2) \). Using \(r \) we construct smooth function \(s : \mathbb{R}^n \to \mathbb{R}^n \sim \{0\} \) such that

\[
s(x) = x \quad \text{whenever for } |x| > 1 - \epsilon.
\]

To this end we define the function \(R : \mathbb{R}^n \to \mathbb{R}^n \sim \{0\} \) by letting

\[
R(x) = \begin{cases}
 r(\frac{1}{1-2\epsilon}x) & \text{if } |x| < 1 - 2\epsilon, \\
 x & \text{else}.
\end{cases}
\]

Note that \(R \) is continuous. Let \(\phi \) be a smooth even function on \(\mathbb{R}^n \) whose support is a subset \(U_\epsilon(0) \) and which satisfies \(\int \phi = 1 \). Let \(s = \phi \ast R \). Suppose \(|a| > 1 - \epsilon \). Then

\[
s(a) = \phi \ast R(a) = a - \int \phi(a-x)(a-x) \, dx = a
\]

since \(y \mapsto \phi(y) y \) is odd.

Step Two. Let \(s \) be as in Part One. Let \(\Omega \) be the solid angle form on \(\mathbb{R}^n \sim \{0\} \). Evidently, \(s \# \Omega = \Omega \) on \(\{x : |x| > 1 - \epsilon\} \). Keeping in mind that \(\Omega \) is closed we use Stokes’ Theorem to calculate

\[
0 \neq \text{area } S^{n-1} = \int_{S^{n-1}} \Omega = \int_{S^{n-1}} s \# \Omega = \int_{\partial D^n} s \# \Omega = \int_{D^n} ds \# \Omega = \int_{D^n} s \# d\Omega = 0,
\]

\footnote{Draw a picture! The point here is that \(|f(x) + \lambda(x - f(x))|^2 = 1 \) is a quadratic equation for \(\lambda \) which has exactly one nonnegative solution.}