The change of variables formula for multiple integrals.

Let \(n \) be a positive integer.

Theorem. Suppose \(U \) is an open subset of \(\mathbb{R}^n \),

\[
 f : U \to \mathbb{R}^n
\]

and the following conditions hold:

(i) \(f \) is continuously differentiable;

(ii) \(f \) is univalent and

(iii) \(\ker \partial f(a) = \{0\} \) whenever \(a \in U \).

Then

\[
 \mathcal{L}^n(f[A]) = \int_A |\det \partial f(x)| \, dx
\]

whenever \(A \) is a Lebesgue measurable subset of \(U \).

Proof. We set

\[
 ||| x ||| = \max\{|x_i| : i = 1, \ldots, n\} \quad \text{for each} \quad x \in \mathbb{R}^n
\]

and note that \(||| \cdot ||| \) is a norm on \(\mathbb{R}^n \). We let \(||| \cdot ||| \) be the corresponding norm on \(\mathbf{L}(\mathbb{R}^n; \mathbb{R}^n) \); that is, for each \(l \in \mathbf{L}(\mathbb{R}^n, \mathbb{R}^n) \) we set

\[
 ||| l ||| = \sup\{|l(v)|| : v \in \mathbb{R}^n \text{ and } |||v|| = 1\}.
\]

For each compact cube \(C \) such that \(C \subset U \) we let \(a(C) \) be the center of \(S \); we let \(R(C) \) be the halfsidelength of \(C \); we note that

\[
 C = \{x \in \mathbb{R}^n : ||x - a|| \leq R(C)\};
\]

we let

\[
 \alpha(C) = \sup\{||| \partial f(x) - \partial f(a(C)) ||| : x \in C\};
\]

and we let

\[
 \beta(C) = \inf\{|||\partial f(a(C))(u)||| : u \in \mathbb{R}^n \text{ and } |||u|| = 1\}.
\]

Owing to simple approximation arguments we may assume that \(A \) is a compact cube. For each \(\delta > 0 \) let

\[
 A(\delta) = \sup\{||| \partial f(x) - \partial f(a) ||| : x, a \in A \text{ and } |||x - a||| \leq \delta\}
\]

. Since \(\partial f \) is continuous and \(A \) is compact we find that

\[
 \lim_{\delta \to 0} A(\delta) = 0.
\]

For each \(x \in U \) let \(b(x) = \inf\{|||\partial f(x)(u)||| : |||u|| = 1\} \). Since \(b(x) = |||\partial f(x)^{-1}|||^{-1} \) for each \(x \in U \) we find that \(b \) is a positive continuous function on \(U \). We set

\[
 \mathbf{B} = \inf\{b(x) : x \in A\}.
\]

Since \(b \) is continuous and \(A \) is compact we infer that \(\mathbf{B} > 0 \) so we may choose \(\delta_0 > 0 \) such that

\[
 A(\delta_0) < \mathbf{B}. \quad (3)
\]

Suppose \(0 < \eta \leq \delta_0 \). We let \(\mathcal{C} \) be a family of compact cubes with the following properties:
\(A = \cup \mathcal{C} \);

(5) \(\| C \cap D \|_n = 0 \) whenever \(C, D \in \mathcal{C} \);

(6) the halflength of any side of any member of \(\mathcal{C} \) does not exceed \(\eta \).

Suppose \(C \in \mathcal{C} \). Because \(\alpha(C) \leq \mathbf{A}(\delta_0) < \mathbf{B} \leq \beta(C) \)
we may apply the Inverse Function Theorem with \(f, L, a, R \) there equal \(f|C, \partial f(a(C)), a(C), R(C) \), respectively, to conclude that
\[
\{ f(a(C)) + \partial f(a(C))(h) : (1 - \alpha(C) / \beta(C))||h|| \leq R(C) \}
\subset f[C]
\subset \{ f(a(C)) + \partial f(a(C))(h) : (1 + \alpha(C) / \beta(C))||h|| \leq R(C) \}.
\]

Combining this with our earlier results about how areas change under linear maps we infer that
\[
(1 - \alpha(C) / \beta(C))^n |\text{det} \partial f(a(C))| ||C||_n
= \mathcal{L}^n(\{ f(a(C)) + \partial f(a(C))(h) : (1 - \alpha(C) / \beta(C))||h|| \leq R(C) \})
\leq \mathcal{L}^n(f[C])
\leq \mathcal{L}^n(\{ f(a(C)) + \partial f(a(C))(h) : (1 + \alpha(C) / \beta(C))||h|| \leq R(C) \})
= (1 + \alpha(C) / \beta(C))^n |\text{det} \partial f(a(C))| ||C||_n.
\]

Setting
\[
I = \sum_{C \in \mathcal{C}} |\text{det} \partial f(a(C))| ||C||_n
\]
and keeping in mind (2) and (3) we find that
\[
(1 - \mathbf{A}(\eta) / \mathbf{B})^n I \leq \sum_{C \in \mathcal{C}} \mathcal{L}^n(f[C]) \leq (1 + \mathbf{A}(\eta) / \mathbf{B})^n I.
\]

Because \(f \) is univalent we find that
\[
\sum_{C \in \mathcal{C}} \mathcal{L}^n(f[C]) = \sum_{C \in \mathcal{C}} \mathcal{L}^n(f[\text{int} C]) = \mathcal{L}^n(f[\cup_{C \in \mathcal{C}} \text{int} C]) = \mathcal{L}^n(f[A]).
\]

Since \(I \) is a Riemann sum for \(J = \int_A |\text{det} \partial f(x)| \, dx \) with respect to cubes of halflength \(\eta \) and since (2) holds we infer that \(J = n(f[A]) \), as desired. \(\square \)