1. ALTERNATING AND SYMMETRIC MULTILINEAR FUNCTIONS.
Suppose V is a vector space.

Definition 1.1. For each vector space Z and each p € Z we set

0} ifp <0,
Z if p=0;
X v.2)=47. N
Lin(V, Z) ifp=1,

MultiLin(V?, Z) if p > 1.

If p € @ (V,Z) then p is symmetric if p <1 or p > 1 and

(v oo) = pu(v) whenever o is a transposition of [1, p]
and p is alternating or antisymmetric if p < 1 or p > 1 and

p(voo)=—p(v) whenever o is a transposition of 1, p].

We let

CDP(V7 7Z) = {p € MultilLin(V?, Z) : u is symmetric}
and we let

/\p(V, Z) ={p € Multiliin(V?, Z) : u is alternating}.
Evidently, A”(V, Z) and (OF(V, Z) are linear subspaces of ®"(V, Z).

If U is a vector space and | € Lin(U, V) we define the linear map

R.2):Q v.2) - R (U, 2)

R’ (1. 2)(@)(w) = p(v)

for ¢ € " (V,Z), u € UP and where v € VP is such that v; = I(u;) for i € [1,p].
This extends the notion of adjoint encountered previously. We note that @ (I, Z)
preserves symmetry and antisymmetry and we set

O't.2)-Q 2| v.2) aa N1.2)-Q .2\ v.2).

One easily verifies that if W is a vector space and m € Lin(V, W) then

R mot,2) =R’ (1.2)0 R (m, 2)

and that similar formulae hold with @ (-, Z) replaced by (O (-, Z) and A" (-, Z).

by setting

1.1. Bases. Suppose E is a basis for V and p € NT. For each ¢ € EP we let
e* e ®p %4

e*(v) =1I_ ef(v;) forve VP.
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be such that

Interior multiplication. For each p € Z we define the bilinear map

R, 2)xv 5 R w2
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as follows: Given p € @"(V,Z) and v € V we set oL v = 0 in case p < 0, we set
plLv=p(v)in case p =1 and, in case p > 1, we set

(pLv)(w) = p(vw) for we VP~L
We call pL v interior multiplication or contraction of ¢ by v. Note that

interior multiplication by v preserves the subspaces of symmetric and alternating
multilinear functions. For each v € V' we define

-1
weLin(@'(V.2).Q" (v, 2)
by letting ¢, (p) = pL v for p € Q" V.
Definition 1.2. For each integer p we let

RV=Q V.R. O'v=0"RrR. Nv=A\R

and we let

R 1=Q R, Q1= wr, Ni=N\GR).

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,

Theorem 1.1 (The Contravariant Exterior Product.). There is one and only
one map

+
NV AV ANy
such that, if o € A"V and ¢ € A"V then
(CEl) o ANp=ppif p=0and ¢=0;
(CE2) (pAY)Lv = (pLv) A+ (—1)Pp A (L) for all vin V.
This mapping is bilinear.

Remark 1.1. Because (CE2) holds we say ¢ — ¢L v is a skewderivation.

Proof. The statement holds trivially if p < 0 or ¢ < 0 so suppose p > 0 and ¢ > 0
and induct on 7 = p + ¢. It is evident by induction on r that there is unique map

NV AV SR v

such that (CE1) and (CE2) are satisfied and that this map is bilinear. We need to
show that if ¢ € APV and v € A7V then ¢ A is alternating. This is trivially the
case if r = 0 so assume r > 0 and that the Theorem holds for smaller r.
Since
(e A)lo=(pLv) A+ (=1)Pe A (YLo)

for any v € V the inductive hypothesis implies that At is alternating in its last r—1
arguments. To complete the proof it will suffice to show that it is alternating in its
first two arguments. That is, given v, w € V we need to show that ((p A¢)Lv)L_w
is alternating in v, w. But

tw(to (P A1) = tw(tw(@) A+ (=1)Pe A () =A+ B+ C+ D
where
A=1(t(@) A and B = (=1)P" 1, (p) At (¥)

C= (=D () New(®) and D= (=1)"(=1)P @ A tw(to(¥)
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A is alternating in v and w because ¢ is alternating; B + C' is clearly alternating
in v and w; and D is alternating in v and w because 1 is alternating.

(pAY)Lv)Lw = ((pLv) AP+ (=1) A (YLv)) Lw
= ((pLv)Lw) Ay + (=1)P " (pLv) A (YL w)
+ (=DP(pLw) A (YLv) + (=1)P(=1)Po A (Y Lv)Lw).
The sum of the second and third terms in this sum is clearly alternating in v and

w and the first and fourth terms are alternating in v and w because ¢ and 1 are
alternating. (I

Theorem 1.2. Suppose p € AV, 9 € A’V and ¢ € A" V. Then
(P AY)AC=p A (P AQ).

(That is, exterior multiplication is associative.)

Proof. The Theorem holds trivially if any of p, ¢, r are negative. So we assume that
p,q,r are nonnegative and induct on s = p+ ¢+ r. The Theorem holds trivially
if s = 0 so suppose s > 0 and that Theorem holds for smaller s. Given v € V we
calculate

((enp) A Lo = ((pAY)Lv) AC+ (=1)PT9 (@A) A (CL)
= ((pLv) A) AC+ (—1)P (@ A (Lw)) A
+ ()P (e AY) A (CLw);

(eA@AQ)Ly=(pLv) AW ACQ) + (=1)Pe A ((Y AQLY)
= (pLo) A (P AQ)
+(=DPe A (L) AQ) + (P (=1 A (¥ A (CL)).
Now apply the inductive hypothesis. (I
Theorem 1.3. Suppose ¢ € A"V and p € A?V. Then
o A= (—1)P7 A .
(That is, exterior multiplication is anticommutative in the graded sense.)

Proof. The Theorem holds trivially if either p or 1 is negative. Induct on r = p+gq.
If r = 0 this amounts to the commutative law for multiplication of real numbers so
suppose r > 0 and that the Theorem holds for smaller r. For any v in V' we have

(pAP)Lv = (pLv) Ap+ (=1)Po A (YLv);

(DM Ap)Lv = (1) (PLv) Ap + (=1)P(=1)% A (pLo).
Now apply the inductive hypothesis. [l

Corollary 1.1. Suppose p is odd and ¢ € A’ V. Then
pAp=0.
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1.2. AP. For p € NT and w € (V*)?P we define
nwye NV
by setting Al(w) = w; and requiring that, if p > 1,
AP(w) = w1 A AP (w]|[1,p — 1]).

),:0.0.0.0.0.0.0.0.0.0.0.0.0.0.9,9.9.0.9,9.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9,0.9.0.9.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.0,0.0.9.0.0.0
Suppose F is a basis for V. For each a € E we let a* € V* be such that

a’(b) = {é ﬁze gN {a}.
Suppose < is a well ordering of E. For each p € N and each A € A(E,p) we let
ey € EP
be such that rnges, = A and e, increasing with respect to <; we let
ehe{e:ec EPY
be such that the i-th coordinate of e’ equals (e4(7))*; and we let
e’ = AP(e}) € /\pV.
Proposition 1.1. The following statements hold:
(i) if A is a finite subset of E and b € E ~ A then

etLb=0;
(ii) if A and B are finite subsets of E and a < b whenever a € A and b € B
then
eAUB — ¢4 ) o,
(iii) If A is a finite subset of F,a € A, B={r€ A:x <aand C={z € A:
a < x} then

e'la= (—1)‘B|eBUC;
(iv) if A and B are nonempty finite subsets of E then
1 if A=B,
e’(ep) = .
0 if A#B.
(iv) if A€ A(E,p) and e € EP. Then
e’(e)=0 ifrnge# A
and, if rnge = A and 0 = e;l oe, then o € X(p) and
e(e) = sgn(o).
Proof. If A is empty (i)-(iv) hold trivially. So suppose A # (). We prove (i)-(iii) by
induction on |A].
If b € E ~ A then, letting a be the <-first member of A and arguing inductively,
we have
eLb=(a* Ne™ b =a*(b) Ae™ — g A (e Lb=0+0=0

so (i) holds.
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If A and B are as in (ii) then letting a be the < first member of A and arguing
inductively we find that

eV =a* Ne

=a* A (eAN{a} A eB)

= (a* NeA™ab)y A eP

:eA/\eB

(A~{a})UB

so (ii) holds.
If A,a and B, C are as in (iii) we use (ii) and (i) and argue inductively to obtain
e'lLa=(e®ra*rne)La
= (ePLa)Aa* Ae® + (—1)BleB A (a*La) A e®
+ (=1)IBHeB A g A (e La)
= (—1)/PleB A e”

(_1)\B\eBUC

so (iil) holds.

Suppose A is a nonempty finite subsets of E and e € V14, If i € [1, |A|]]ﬂ:1
e; ¢ A we let T transpose 1 and i and let f € El41=1 be such that eo 7 = ¢; f.
Then

e(e) = —et(cor) =e(e; f) = (e’ Le))(f) =0
by (i). If rnge = rng A it evident that o = e;' o e € X(|A]|) so
eale) =eas(eso0) =sgn(o)e?(es) =1
since, letting B = A ~ {a} and arguing inductively using (i),
eales) = (a* NeP)(@eaciay) = (a*(a)e” —a* A ((e®)La)) (ep=1+0=1.
(I
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
Theorem 1.4. Suppose ¢, € APV and

¢p(ea) =(es) forall Ae A(E,p).

Then ¢ = 1.
Proof. Suppose e € A(E,p) Let A = rng F and let 0 € 3(p) be such that e = e400.
Then
¢(e) = sgn(o)g(ea) = sgn(o)y(ea) = ¢ (e).
It follows from 7?7 that ¢ = 1. [l

Corollary 1.2. Suppose ¢ € A’ V. Then
{ve EP:¢(v)#0} isfinite
and

(1) o)=Y e*(v)p(ea)

A€eAN(E,p)
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Proof. The first assertion of the corollary follows from 7?7 and that implies that the
right hand sice of (1) defines a member of A”(V, Z). That both sides of (1) have
the same value on ep for any B € A(F,p) follows from ?77. O

Theorem 1.5. Suppose w € (V*)P. Then

(2) AP (w)(v) = Z sgn(o)II_ w;i(ve(;)) for any v € VP,
o€X(p)

Proof. For each v € VP let 1(v) be the right hand side of (2). So ¢ € Q" (V, Z),
For p € ¥(p) and v € VP we have

Ywop)= Y sgn(o)_wi((vo p)y)

oceX(p)
= Z sgn(o o p~ L w;(vo, (i)
a€X(p)
=sgn(p) > sgn(o)T2_wi(vos ;)
o€X(p)
= sgn(p)y(v).
Thus ¢ € AP(V, Z). Since 7?7 implies that both sides of (2) have the same value on
e, for any A € A(E,p) we infer from ?? that (2) holds. O

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF

Corollary 1.3. Suppose n =dimV < oo. Then

(3) ¢ = ¢(ep)e” forpe \"V.
Moreover, e (er) = 1 and {e”} is basis for dim A" V. In particular, dim \"V =
1.

Proof. (3) holds since {A: A C E and |A| =n} = E by ?? which also implies that
spaner = /\" V. That e®(er) = 1 follows from Proposition ?? and this implies

{ef} is a basis for A" V. O
Proposition 1.2. For ¢,9 € A"V with 1) # 0 there is unique
¢
—€eR
(0
such that ()
¢ _ o
— = whenever v € V" and spanrngv = V.
v ()
Moreover,
¢
o="20.
(G
Proof. This is a straightforward consequence of the foregoing. O

Proposition 1.3. Suppose L € End(V). There is a unique r € R such that
n
(4) (/\ L) (6) =€ for p e V™,
Proof. This holds since A" L € End (A" V) and dim A"V = 1. O



Definition 1.3. For L € End(V) we let
detL =r
where r is as in (4).
Theorem 1.6. Suppose L, M € End(V). Then
det (Lo M) = (det L)(det M).
Proof. If ¢ € N\" V then

det (Lo M)¢p =

det L)(det M)¢.
O
1.3. The signature of a permutation revisited. Suppose n € Nt. Let e;,
€ [1,n], be the standard basis vectors for R"™. For p € X([1,n]) let L, € GL(R™)
be such that
L,(e;) = e, forie[l,n].
A simple calculation shows that
L,oL, =Ly, foro,peX([l,n]).
It follows from ??7 that
Y([1,n]) 20— det L, € {—1,1}
is a homomorphism. Since
deto = —1 if o is a transposition of [1,n]
we find that
sgn(o) =det L, for o € X([1,n]).

Corollary 1.4. Suppose A and B are finite subsets of F, |A| = |B| and o is a
permutation of [1,]A|]. Then

eP(es00) = sgn(o) 1? B = A4,
0 if B# A

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

2. THE SHUFFLE FORMULA.

Suppose m, N € Nt. We let
Z(m,N)
be the set of m-tuples I of finite nonempty subsets of N such that
(i) I; = [min I, max I] for i € [1,m];
(ii) minl; = 1;
(iii) minI; 11 = maxI; + 1 for ¢ € [1,m));



(iv) N =320 |5l
If I € Z(m,N) we let
Sh(I)

be the set of permutations o of [1, N] such that o|I; is increasing for ¢ € [1, m];
such a o is called a shuffle of type I. Evidently,

(5) rev(c) = U U {(k,l) e I; x I : 0(i) > o(j)}.

i=1j=i+1

Suppose m € NT, p is an m-tuple of positive integers. Let Fy = 0 and, for
i € [1,m], let P, = 375 pi. Fori € [1,m] welet I; = [P,y + 1, P]; Thus
I€Z(m).

Theorem 2.1. Suppose ¢ is an m-tuple such that ¢; € A"V for i € [1,m] and
v € VPm. Then

(6) (/\sz) ()= Y sen(o)¢i(vo (o|L).

o€Sh(I)
Proof. We prove this by induction on m. (6) holds trivially if m = 1. Suppose
w € VPm—1 ig guch that v = 77 @. O

2.1. The case m = 2. Let

Q= (o1 Ap2)(v); = ((¢pr1lvi) Ad2)(w); Q2= (=1)" (g1 A (P2Lv1))(w);
Thus
Q=0+ Qs.
Lemma 2.1. We have
(7) 0 = > sgn(o)¢1(v o (a]l1))g2(v o (o[12)).
oc€Sh(I), o(1)=1

Proof. Induct on p;. If py =1 then Q1 = ¢1(v1)d2(w) so (7) holds.
Suppose p; > 1. Let J; = [1,p; — 1] and let Jo = [p1,p1 + p2 — 1]. Arguing
inductively we find that

Q=Y sgn(p) (1l vi)(wo (p|J1))da((wo (p|J2))

pESh(J)

= Y. sgu(0)éi(vo(allh)ga((wo (a]l2).

oceSh(I),0(1)=1

Lemma 2.2. We have

(8) Qe = > sgn(o)¢1(v o (o|l))d2(vo (o]l2)).

oceSh(I), o(1)=p1+1

Proof. Induct on po. If p; =1 then Qg = (—1)P 1 (w)p2(v1) so (8) holds.
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Suppose ps > 1. Let J; = [1,p1] and let J; = (p1,p1 +p2 —1]. Arguing
inductively we find that

Q= (=" Y sgn(p)di(wo (pl))(¢2Lvr)((wo (plJ2))

peSh(J)

— Z sgn(o)¢1(vo (a[l1))g2((vo (a|lz)).

oceSh(I),0(1)=p1+1

O

2777777777770 7171717777707 7L L LI L L L L L L7777 777777717 L L LT L7777

I €Z(m,N)

JeI(2,N) J1:UL' Jo = Ly

i=1

KeZI(m,N —|Ih+1|) K;=1 forie][l,m]
g : Sh(J) x Sh(K) — Sh(I)

g(a,B8) = (a0 B) U (allpn+1)
Lemma 2.3. rngg = Sh(/) and
(9) sgn(g(a, B) = sgn(a)sgn(B) for a, 3 € Sh(J) x Sh(K).
Moreover,
g, B)|I; = (alJy) o (BIKy) for each i € [1,m] and  g(a, B)|Lmi1 = | Ja.

Proof. Let v = g(a, 8) € Sh(I). Since +|; is increasing for each i € [1,m + 1] and
since rng~y C [1,m + 1] we find that v € Sh(I).
Suppose 4,7 € [1,m + 1] and ¢ < j. If j < m we find that

{(h0) € I x L s 9(k) > 21D} = {(k,1) € L I B(k) > BD)}
and
{(k,l) S I1 X Ij : Cl/,(k) > O[(l)} = @

since « is increasing on Jy. Also,

{(k,0) € I; X gy (k) > ()} = {(k,1) € L; X Imsr : a(B(K)) > a(l)}

so, as  permutes Ji,

m m

UL, D) € I x Ty (k) > 4} = ([ J{(k. 1) € Ii X Ly < ak) > a(D)}.
i=1 =1

Thus rev(7y) is the disjoint union of rev(a) and rev(8) so (9) holds. O
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MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
Let ® = A~ ¢;. We have

m—+1
( A ¢i> () = (@ A dmyr)(v)

=1

= Z sgn(a)®(v o (a|J1))dm1(v o (a|J2)

a€eSh(J)

= > sgn(@) | Y sen(B)IILi6i(vo (aly) o (BIK))) | dme(vo (al o)
a€Sh(J) BESh(K)

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

3. SYMMETRIC ALGEBRA.

For each m € N

E(E,m)
be the set of o : E — N such that
loll = 3 a(a) =m.
acl
Proposition 3.1. Suppose E is finite. Then

- (“17)

Proof. Suppose A € A(|E| —1+m,|E|—1). Let A(\) € E(m+|E|—1,|E|—1) be
such that
o [a -1 if i =1,
A =321 o
@) —A@E—1)—1 ifie (1, |E —1],
Suppose a € Z(|E|,m). Let L(a) € A(|JE| — 1+ m,|E| — 1) be such that

3

L(a)(i) =i+ Za(j) for i € [1,|E| - 1].

Now observe that A and L are inverse to one another. O

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

AL()(1) = L{a)(1) =1 =1+ (Z a(j)) —1=a(l);

If ¢ > 1 then
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LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
If a € 2(E,m), a € E and a(a) >0 we let a | a € E(E, m — 1) be such that

afa) =1 if b=a,

(ata)b) = {a(b) itbe B~ {a}.

For a € E(E, m) we define

eO‘EQMV

e“*=1 ifm=0

by induction on m by letting

and, if m > 0, by requiring that
e® =a* ®e™ where a is the <-first member of {b € E : a(b) # 0}.
If m > 0 and a € Z(E, m) we define
e, evm
by requiring that
€, = 0€4, where aisthe <-first member of {b € E : a(b) # 0}.
Proposition 3.2. Suppose p,q € N. The following statements hold:
(i) if « € E(E,p) and b € E then
e“Lb=0 if a(b) =0;
(ii) if « € E(E,p) and S € E(E, q) then
et =e* e’
(i) If « € E(E,p), a € E and a(a) # 0 then
e“La=e
and, if p > 0,
p(eq) = ¢p(@€sia) for ¢ € /\p Vi
(iv) if p> 0 and o, 8 € Z(FE,p) then
o 1 ifa=p4,
e®(ep) = .
0 if a# 6.
1111 LLLL L LT L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L LY

Proposition 3.3. Suppose p € NT, ¢ € OF(V,Z) and ¢(e,) = 0 for all a €
E(P,p). Then ¢ = 0.

Proof. (¢La)(eg) =0for alla € E and 8 € Z(E,p— 1) so, inducting on p, we find

that
$(v) =D a*(v)(¢La)(w) =0.
aclE
Theorem 3.1. Suppose p € NT, ¢ € OF(V,Z) and v € VP. Then
)= > e*(v)¢(ea)

a€E(E,p)
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Proof. Both sides have the same value on eg, 8 € Z(E, p). O

Induct on p. This obviously holds if p = 1. Suppose p > 1. Let w € VP! be
such that v = 77 w. Then
p(v) = (pLv1)(w)
= b (v1)(oLb)(w)

beE

SO ILACINED DI CIRAIC

beE BEE(E,p—1)

= Zb*(vl) Z e’ (w)p(bep)

beE BEE(E,p—1)

Since e*Lb=01if a € Z(F,p) and a(b) =0,

Z ea(v)qb(ea)zzb*(vl) Z (e*Lb)(w)¢(ea)

a€E(E,p) beE a€E(E,p)

=) Y (LD w)dled)

beE a€ZE(E,p), a(b)>0

=N 0rm) Y. eP(w)sbean).

beE a€E(E,p), a(b)>0
4. THE COVARIANT EXTERIOR PRODUCT.

For p € N we define
Lin(R, \°(V*)) if p=0,
Ap € 4 Lin(V, A1 (V")) if p=1,
MultiLin(VP, AP(V*)) if p=0,
by induction on p as follows. Let ¥ : V' — V** be asin ??. If p = 0 we let Ap(r) =7
for r € R; if p =1 we let Ap(v) =¥(v) for v € V; and if p > 1 we require that

Ap(v) = I(v1) A Np—1(w) ifv e VP, we VPl andv=17w

NEW
Ap(v) = AP(J o v)
1 fA=1B
/\ * — )
v(ea)(€B) {o if A+ B.
NEW

Definition 4.1. For p € N we let
/\ V =span{A,(v) : v € VP}.
P
Proposition 4.1. Suppose p,q € N, u € VP and v € V4. Then

Ap(u) A Ng (V) = Apsq(TD) € /\p+q V.
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Proof. Induct on p. If t € V, u € VP and v € V¢ then

Apa(Eu) A Ag(v) = (9(E) A Ap(w)) A Ag(v)
= 0(t) A (Ap(u) A Ag(v))
= 0() A (Ap+q(uD))
uv)
v).

H-

= Aptq+1(tTD

= Nptgti(tuv

Theorem 4.1. Suppose p,q,r € N. Then
Enn=(=1PInAE forfe A,V andne A\, V.
EAMAC=ENMAQ) forEe AV, ne \,Vand (e A\ V.
4.1. Bases. Suppose F is a basis for V.

Theorem 4.2. Suppose p € NT. We have
Np(v) = Z e(v) A, (ea) forve VP
ACE, |A|l=p

Proof. Induct on p. Obvious if p = 1. Suppose u € V and v € VP. Arguing
inductively we find that

Ap(TT) = (1) A A(v)

(Z a*(u)a) A Z e(v)) A, (ea)

a€E ACE, |A|=p

Yo Y dwet(v)d(a) Ay (en)

a€E ACE, |Al=p

= > @) Apsi(ec)

CCE, |C|=p+1

since, by 77,

be® (W) Apta (ec) ifa ¢ A,

a*(u)e? (v) I(a) Ay (€a) = {0 ifae A

Definition 4.2. If A is a finite subset of E we define
el e (vl
by letting e, = a” if A = {a} for some a € FE and requiring that
ey =a*e} ,, if |4 >1andais the <-first member of A.
Theorem 4.3. Suppose p € Nt AC E, BC FE and |A| = p = |B|. Then

Aplea)(el) = {1 A4=5,

0 if A+#B.
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Proof. Straightforward induction on p. O
Theorem 4.4. {e,(A): AC E and |A| = p} is a basis for A, V.

4.1.1. The universal property of \,.

Definition 4.3. We define

Mp v,z : Lin (ILﬁm (/\p v, Z) N Z))

by letting
My vz(L)=LoA, for L€ Lin (/\p v, Z).
We let
L/\p v,z = M/Ki v,Z*

Theorem 4.5. We have
L v,z € Iso (Lm (/\p v, Z) N v Z)) .

In particular, for any u € AP(V, Z) there is one and only one L € Lin (/\p v, Z)
such that
w=LoA,.
Moreover, if Y is a vector space and | € Lin(Y, Z) then
LoLp vy (u) =Lp vz(lop)
for any € A*(V,Y).

Remark 4.1. In particular,

Ly, vz etso (A V) ATV).

Proof. The final assertion of the Theorem is an obvious consequence of the first
assertion of the Theorem.
Suppose L € ker M A, Vo2 Then L vanishes on the range of A, so L vanishes on

spanrng A\, and thus equals 0. So kerMp v,z = {0}.

Let E be a basis for V. Let < be a well ordering of F and for A C E with
|A| = p let e and e be as in ??. Suppose u € AP(V,Z). By ?? and ?? there is
L € Lin (/\pV’Z) such that L(Ap(es) = p(es) whenever A C E and [A| =p. It
follows that 1 = Mp v,z(L) so rngMp v,z = A"(V, Z).

Thus Mp, v,z € Iso (Lm (/\p, Z) AP, Z)), O
4.2. W. Suppose W is a vector space.
Definition 4.4. Suppose L € Lin(V,W). We define

/\pL € Lin (/\pv,/\pw)

by requiring that
(A, £) (o)) = Au(w)

for v € VP and where w € WP is such that, for i € [1,p], w; = L(v;).
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Proposition 4.2. Suppose | € Lin(V, W). The following diagram is commutative:

ANw o N Ay
1L, wr LLp v

(nw) ™ (Av)

Proof. Suppose ¢ € AP W, v € VP and w € WP is such that the i-th coordinate of
w, i € [1,p], equals I(v;). Then

Lyvz (A1) @)(Ap(0))

I
>
3
NG
S
=
I
SN
S

and

(A1) Caarso)) (np0) = iz ((A 1) (1))

=L, wr(9)(Ap(w))
= ¢(w).

O

Proposition 4.3. Suppose | € Lin(V, W). The following diagram is commutative.

Aoy P2

L AP L AP
ANw o AL Ay

Proof. Suppose w € (W*)? and v € VP. Let n € (V*)? is such that its i-th
coordinate, i € [1,p], equals I*(w;) = w; ol € V*. Then

(7 ((A,0) () @) = (o) () = PP ()(0)

(A1) rorul@)) @) = (A1) (@) (0) = A () ().

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,

Definition 4.5. We let

L = Lyyzon e Lin (A (v, (A V))-

Proposition 4.4. Suppose | € Lin(V, W). The following diagram is commutative.

A .
N (W) =" N, (V7)
\l/ Ip,W l« Ip,V

() B ()

—
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Proof.

Lo (A1) =Loveon'o (A (1)
=Lyvro (/\p l) o AP
- (/\p l) ToLywi o AP
- (A 1) o,

5. INNER PRODUCTS.

Suppose § € Lin(V,V*) is the polarity of an inner product e on V.
For each p € NT and v € VP let

vP e (V)P
be such that its é-th coordinate, i € [1,p], equals S(v;).

Definition 5.1. For each p € NT let

B=T0 (A, 8) etso (A V.(A V) )-
Theorem 5.1. (3, is the polarity of an inner product on /\p V. In fact,
By(Ap(0)) (Ap(w)) = AP(v7)(w) for v,w € V.
Moreover, if e € VP is such that the range of e is an orthonormal basis for V' then
{Ap(ea): AC[1,dimV] and |A| = p}
is an orthonormal basis for A V.

Theorem 5.2. Suppose p is an integer not less than 2, u € V, u # 0, v € VP!
and Ap_1(v) # 0. Then

| Ap (@D)| < ful| Ap—1 (v)]
with equality if and only if u € (spanrngv)*.

Proof. Let s € rngv and t € (spanrngv)’ be such that u = s +¢. Then

| Ap (@0)|* = (B(u) AP~ (B(v))) (wD
= (B(u) A"~ (B)))((s + 1) v)
= ((B(u) AP~H (B(v))) LE)(v)
( (



17

5.1. Adjoints. Suppose W is a finite dimensional inner product space and [ €

Lin(V,W). Then

(/\p Ly = 6;114/ o (/\p L)* o Bpv-
AL =\ (&),

Proof. Chase through the commutative diagrams.

Theorem 5.3.

O

5.2. The Hodge * operator. Suppose dimV = n. Let Q2 € AV be such that
|Q| = 1. (Note that the only other member of A, of norm 1 is —(2.) Let Q* € A"V

be such that Q*(Q) = 1.

’yp:/\pV%/\pV

7= e A BT
aldownthrought the inner product. We define

%€ ]Lﬁ]n(/\p V,/\n_p V)

be defined by

by letting
1 =""P(Q"L).

*

Proposition 5.1. -* is an isometry. Moreover,

§A (xn) = (§ o)
and
x k& = (—1)p("_p)§.
Proof. That - * is an isometry can be verified by observing that
(re) 1 if A=B,
eq)oep =
VEEET 0 itA4£B

whenever A, B are subsets of E and |[A| = p = |B].
We have

QY EN () = Q(ENBLL(Q LBp) () = (X LENGLL(QLB,)) = E .

(]



