1. Trees; context free grammars.

1.1. Trees.

Definition 1.1. By a tree we mean an ordered triple
\[T = (\mathcal{N}, \rho, p) \]
such that

(i) \(\mathcal{N} \) is a finite set;
(ii) \(\rho \in \mathcal{N} \);
(iii) \(p : \mathcal{N} \sim \{\rho\} \to \mathcal{N} \);
(iv) if \(n \in \mathbb{N}^+ \) and \(\nu \in \text{dom} \ p^n \) then \(p^n(\nu) \neq \nu \).

One can relax the condition that \(\mathcal{N} \) be finite but we will have no use for infinite trees.

Suppose \(T_i = (\mathcal{N}_i, \rho_i, p_i) \), \(i = 1, 2 \) are trees and \(\iota : \mathcal{N}_1 \to \mathcal{N}_2 \). We say \(\iota \) is an isomorphism from \(T_1 \) to \(T_2 \) if \(\iota \) is univalent, \(\text{rng} \ \iota = \mathcal{N}_2 \),
\[\iota(\rho_1) = \rho_2 \quad \text{and} \quad p_2(\iota(\nu)) = \iota(p_1(\nu)) \quad \text{for} \ \nu \in \mathcal{N}_1 \sim \{\rho_1\} . \]

1.2. Suppose \((\mathcal{N}, \rho, p) \) is a tree.

Proposition 1.1. Suppose \(\nu \in \mathcal{N} \). Then there is \(n \in \mathbb{N} \) such that \(\nu \not\in \text{dom} \ p^n \).

Proof. Suppose the Proposition were false. Let
\[f = \{(n, p^n(\nu)) : n \in \mathbb{N}\} \]
and note that \(f : \mathbb{N} \to \mathcal{N} \). Since \(\mathcal{N} \) is finite and \(\mathbb{N} \) is infinite there are \(m, n \in \mathbb{N} \) with \(m < n \) and \(f(m) = f(n) \). But then
\[p^{n-m}(p^m(\nu)) = p^n(\nu) = f(n) = f(m) = p^m(\nu) \]
which contradicts (iii). \(\square \)

Suppose \(\nu \in \mathcal{N} \). In view of the preceding Proposition we may set
\[d(\nu) = \max \{n \in \mathbb{N} : \nu \in \text{dom} \ p^n\} \in \mathbb{N} . \]

Note that
\[p^{d(\nu)}(\nu) = \rho . \]

Set
\[< \nu > = (p^{d(\nu)}(\nu), p^{d(\nu)-1}(\nu), \ldots, p(\nu), \nu) \in \mathcal{N}^{d(\nu)+1} . \]

Note that (iii) implies \(< \nu > \) is univalent. Note that
\[< \nu >_0 = \rho \quad \text{and} \quad < \nu >_{d(\nu)} = \nu . \]

For each \(\delta \in \mathbb{N} \) we let
\[\mathcal{N}(\delta) = \{\nu \in \mathcal{N} : d(\nu) = \delta\} . \]

Note that \(\mathcal{N}^{(0)} = \{\rho\} \).

The members of \(\mathcal{N} \) are called nodes. \(\rho \) is called the root node. If \(\nu \in \mathcal{N} \sim \{\rho\} \) we call \(p(\nu) \) the parent of \(\nu \). If \(\nu \in \mathcal{N} \) we let
\[c(\nu) = p^{-1}[\{\nu\}] = \{\mu \in \mathcal{N} \sim \{\rho\} : p(\mu) = \nu \}\]
and call the members of this set the children of \(\nu \). A node which has children is called an interior node. A node which has no children is called a leaf node.
If \(\mu, \nu \in \mathcal{N} \) we say \(\mu \) is a descendant of \(\nu \) if \(\mu \neq \nu \) and \(\nu \) is in the range of \(\mu \) which amounts to saying that \(\nu = p^n(\mu) \) for some \(n \in \mathbb{N}^+ \). If \(\mu, \nu \in \mathcal{N} \) we say \(\mu \) is an ancestor of \(\nu \) if \(\nu \) is a descendant of \(\mu \).

We let
\[i(T) = \{ \nu \in \mathcal{N} : \nu \text{ is an interior node} \} \]
and we let
\[l(T) = \{ \nu \in \mathcal{N} : \nu \text{ is a leaf node} \} . \]
If \(\nu \) is a node we call \(d(\nu) \) the depth of \(\nu \).

We \(d(T) = \max \{ d(\nu) : \nu \in \mathcal{N} \} \) and call this natural number the depth of \(T \).

Definition 1.2. We say the tree \(\mathcal{U} = (\mathcal{O}, \sigma, q) \) is a subtree of \(T = (\mathcal{N}, \rho, p) \) if \(\sigma \in \mathcal{O} \subset \mathcal{N} \) and \(q = p(\mathcal{O} \sim \{ \sigma \}) \).

Given \(\nu \in \mathcal{N} \) let \(\mathcal{N}_\nu \) be the set whose members are \(\nu \) and the descendants of \(\nu \), let \(p_\nu = p(\mathcal{N}_\nu \sim \{ \nu \}) \) and note that
\[T_\nu = (\mathcal{N}_\nu, \nu, p_\nu) \]
is a subtree of \(T \) which we call the subtree associated to the node \(\nu \).

1.3. Ordered trees.

Definition 1.3. By an ordered tree we mean an ordered quadruple
\[\mathcal{O} = (\mathcal{N}, \rho, p, <) \]
such that \((\mathcal{N}, \rho, p) \) is a tree; \(< \) is a linear ordering of \(\mathcal{N} \) and
\begin{enumerate}
\item \(p < \nu \) whenever \(\nu \in \mathcal{N} \sim \{ \rho \} \);
\item \(p(\mu) < p(\nu) \Rightarrow \mu < \nu \) whenever \(\mu, \nu \in \mathcal{N} \sim \{ \rho \} \).
\end{enumerate}

Suppose \(\mathcal{O}_i = (\mathcal{N}_i, \rho_i, p_i), i = 1,2 \) are ordered trees and \(\iota : \mathcal{N}_1 \to \mathcal{N}_2 \). We say \(\iota \) is an isomorphism from \(\mathcal{O}_1 \) to \(\mathcal{O}_2 \) if \(\iota \) is an isomorphism from \((\mathcal{N}_1, \rho_1, p_1) \) to \((\mathcal{N}_2, \rho_2, p_2) \) and
\[\mu, \xi \in \mathcal{N}_1 \text{ and } \mu <_1 \xi \Rightarrow \iota(\mu) <_2 \iota(\xi) . \]

Suppose \(\mathcal{O} = (\mathcal{N}, \rho, p, <) \) is an ordered tree and \(\mathcal{U} = (\mathcal{O}, \sigma, q) \) is a subtree of \(T = (\mathcal{N}, \rho, p) \). Let
\[\prec \]
\[\{ (\mu, \xi) \in \mathcal{O} \times \mathcal{O} : \mu < \xi \} \]
and note that \((\mathcal{O}, \sigma, q, <) \) is an ordered tree which we call the ordered tree associated to \(\mathcal{U} \). In particular, if \(\nu \in \mathcal{N} \), \(\mathcal{O} = \mathcal{N}_\nu \), \(\sigma = \nu \) and \(q = q_\nu \), we call this ordered tree the ordered tree associated to \(\nu \).

1.4. Tree codes. We say a subset \(T \) of \((\mathbb{N})^* \) is a tree code if
\begin{enumerate}
\item \(\phi \in T \);
\item if \(s \in T \), \(j \in \mathbb{N} \) and \(s(j) \in T \) then \(s \in T \);
\item if \(s \in T \) then \(\{ j : s(j) \in T \} \) is \(I(n) \) for some \(n \in \mathbb{N} \).
\end{enumerate}

Proposition 1.2. Suppose \(T \) is a tree code,
\[p = \{ (s(j), s) : s \in T \}, j \in \mathbb{N} \text{ and } s(j) \in T \}
and \(< \) is the intersection with \(T \times T \) of the lexicographic ordering of \((\mathbb{N})^* \). Then \((T, \emptyset, p, <) \) is an ordered tree.

Definition 1.4. We call \((T, \emptyset, p, <) \) as in the preceding Proposition the tree associated to the tree code \(T \).
1.5. Suppose $T = (\mathcal{N}, \rho, p)$ is a tree and, for each $\nu \in \mathfrak{i}(\nu)$,

$$<_{\nu}$$

is a linear ordering of $c(\nu)$. We will show that there is one and only $<_{\nu}$ such that $(\mathcal{N}, \rho, p, <_{\nu})$ is an ordered tree and

$$\mu <_{\nu} \xi \iff \mu < \nu$$

whenever $\nu \in \mathfrak{i}(T)$ and $\mu, \xi \in c(\nu)$.

Let $D = d(T)$. For each $\nu \in \mathfrak{i}(T)$, let $n_{\nu} = |c(\nu)|$ and let

$$c_{\nu} : I(n_{\nu}) \to c(\nu)$$

be determined by the requirement that

$$i, j \in I(n_{\nu}) \text{ and } i < j \implies c_{\nu}(i) <_{\nu} c_{\nu}(j).$$

We define the functions

$$C_d : \mathcal{N}^d \to \mathcal{N}^d, \quad 0 \leq D,$$

by induction as follows. We let $C_0(\rho) = \emptyset$ and, whenever $0 \leq d < D$ we require that

$$C_{d+1}(\nu) = C_d(p(\nu)) \circ (c_{p(\nu)}(\nu))$$

whenever $\nu \in \mathcal{N}^{d+1}$.

We let

$$C = \bigcup_{d=0}^{D} C_d.$$

The following statements hold:

(i) C is a univalent function with domain \mathcal{N};

(ii) the range of C is a tree code;

(iii) if

$$<$$

equals the set of $(\mu, \nu) \in \mathcal{N} \times \mathcal{N}$ such that $C(\mu)$ precedes $C(\nu)$ in the lexicographic ordering on the $\text{rng} C$ then $(\mathcal{N}, \rho, p, <)$ is an ordered tree;

(iv) whenever $\nu \in \mathfrak{i}(T)$ and $\mu, \xi \in c(\nu)$ we have

$$\mu <_{\nu} \xi \iff \mu < \nu.$$

Evidently, C is a isomorphism from T to the tree code associated to the range of C.

Proposition 1.3. Suppose $T = (\mathcal{N}, \rho, p)$ is a tree and $(\mathcal{N}, \rho, p, <_i)$, $i = 1, 2$ are ordered trees such that

$$\mu <_1 \xi \iff \mu <_2 \xi \quad \text{whenever } \nu \in \mathcal{N} \text{ and } \mu, \xi \in c(\nu).$$

Then $<_1 = <_2$

Proof. Straightforward exercise for the reader. \qed

That is, the ordering in an ordered tree is determined by the ordering it induces on the sets $c(\nu)$ corresponding to interior nodes ν.
1.6. Growing trees. Suppose
\[T = (N, \rho, p) \]
is a tree and
\[\mathcal{O} \text{ and } \mathcal{P} \]
satisfy the following conditions:
(i) \(\mathcal{O} \text{ and } \mathcal{P} \) are functions with domain the leaf nodes of \(T \);
(ii) for each \(\nu \in N \), \((\mathcal{O}(\nu), \nu, \mathcal{P}(\nu)) \) is a tree;
(iii) the family
\[\{i(T)\} \cup \{\mathcal{O}(\nu) : \nu \in \mathcal{L}(T)\} \]
is disjointed.
Let
\[U = i(T) \cup \left(\bigcup \{\mathcal{O}(\nu) : \nu \in \mathcal{L}(T)\} \right) \]
and let
\[q = p \cup \left(\bigcup \{\mathcal{P}(\nu) : \nu \in \mathcal{L}(T)\} \right). \]
We leave it as an exercise for the reader to verify that
\[(U, \rho, q) \]
is a tree; that \(N \subset U \); and that, for each \(\nu \in \mathcal{L}(T) \), \((\mathcal{O}(\nu), \nu, \mathcal{P}(\nu)) \) is the subtree associated to the node \(\nu \) of \(U \).

Now let us suppose that
\[(N, \rho, p, <) \]
is an ordered tree and that, for each \(\nu \in \mathcal{L}(T) \), \((\mathcal{O}(\nu), \nu, \mathcal{P}(\nu), <_\nu) \)
is an ordered tree. We leave it to the reader to verify that there is one and only one
\[< \]
such that
(i) \((U, \rho, q, <) \) is an ordered tree;
(ii) if \(\mu, \xi \in N \) and \(\mu < \xi \) then \(\mu < \xi \);
(iii) if \(\nu \in \mathcal{L}(T) \), \(\mu, \xi \in \mathcal{O}(\nu) \) and \(\mu <_\nu \xi \) then \(\mu < \xi \).

2. Context free grammars.

Definition 2.1. By a **context free grammar** ordered triple
\[G = (T, N, s, \mathcal{P}) \]
such that
(i) \(T \) is a set;
(ii) \(N \) is a set, \(T \cap N = \emptyset \) and \(s \in N \);
(iii) \(\mathcal{P} \subset N \times (T \cup N)^*; \)
The members of T are called tokens or terminal symbols. The members of N are called nonterminals or nonterminal symbols. s is called the start symbol. The members of P are called productions. Instead of writing $(r, s) \in P$ one often writes
\[r := \epsilon \text{ if } |s| = 0 \]
and
\[r := s_0 \ s_1 \ \cdots \ s_{|s|-1} \text{ if } |s| > 0. \]
If $r \in N$, $n \in \mathbb{N}^+$ and $s_0, \ldots, s_{n-1} \in (T \cup N)^*$ one often writes
\[r := s_0 \ | \ s_1 \ | \ \cdots \ | \ s_{n-1} \]
instead of
\[(r, s_i) \in P, \ i \in I(n). \]
Obviously, if (T, N, s, P) is a context free grammar then so is (T, N, t, P) if $t \in N$.

Definition 2.2. A parse tree Q for the context free grammar $G = (T, N, s, P)$ is an ordered quintuple
\[(N, \rho, p, <, f) \]
such that
(i) $(N, \rho, p, <)$ is an ordered tree;
(ii) $f : N \to T \cup N$;
(a) if $\nu \in i(T)$ then $f(\nu) \in N$;
(b) if $\nu \in i(T)$ then $f(\nu) \in T$;
(iii) if $\nu \in i(T)$ and ν has m children
\[\mu_0 < \mu_2 < \ldots < \mu_{m-1} \]
then
\[(f(\nu), (f(\mu_0), \ldots, f(\mu_{m-1}))) \in P. \]
Notice that the notion of parse tree is independent of s.
We define
\[<Q> \in (T)^* \]
as follows. Let
\[L = \{ \nu \in i(T) : f(\nu) \neq \epsilon \} \]
and let
\[n = |L|. \]
If $n = 0$ we let
\[<Q> = \epsilon \]
and if $n > 0$ and
\[\nu_0 < \nu_1 < \cdots < \nu_{n-1} \]
are the members of L we let
\[<Q> = (f(\nu_0))|(f(\nu_1))|\cdots|(f(\nu_{n-1})). \]
For each $t \in N$ we let
\[L(G, t) \]
be the set of $<Q>$ as above where $f(\rho) = t$. We let
\[L(G) = L(G, s) \]
and we call this language on the alphabet T the language generated by G.

Definition 2.3. We say the context free grammar \mathcal{G} is **good** if $Q_i = (N_i, \rho_i, p_i, <_i, f_i), i = 1, 2$, are parse trees such that $<_i Q_1 > =<_i Q_2 >$ then the ordered trees $(N_i, \rho_i, p_i, <_i)$ are isomorphic; recall that this is the case if and only if they have the same tree codes. We say \mathcal{G} is **bad** if it is not good.

2.1. A bad grammar. Let \mathcal{B} be the context free grammar defined as follows. Let

$$T = \mathbb{N} \cup \{-, +, \ast\}$$

and let

$$N = \{\text{expr}\}.$$

Let expr be the start symbol. Let the productions be given by

$$\text{expr} := j \quad \text{for} \ j \in \mathbb{N}$$

$$\text{expr} := - \ \text{expr}$$

$$\text{expr} := \text{expr} + \text{expr}$$

$$\text{expr} := \text{expr} \ast \text{expr}$$

Note that there are an infinite number of productions.

This grammar derives the string $27 + 5 \ast 298$ with two nonisomorphic parse trees so it is bad.

There are a number of ways to deal with this problem. One is to introduce parentheses which we now do. As we shall see, there are other ways to deal with this problem.