Terms.

We fix a first order language and we let
\[S \]
be its set of symbols. (We may have called this the alphabet previously.)

1. GÖDEL NUMBERING OF SYMBOLS.

\(S \) is the disjoint union of the sets

\[\text{Punct, Logical, Const, Var, Func, Pred} \]

where Punct is the set of punctuation symbols
\[(,) \]
Logical is the set of logical symbols
\[\sim \ \lor \ \land \ \to \ \leftrightarrow \ \forall \ \exists \]
Const is the set of constant symbols
\[c_k \]
where the \(k \)s run over a subset of \(\mathbb{N}^+ \) with the property that if \(1 \leq j < k \) and \(k \) is in this set then so is \(j \);
Var is the set of variable symbols
\[x_k, \ k \in \mathbb{N}^+ \]
Func is the set of function symbols
\[f^n_k \]
where the \((n, k) \)s run over a subset of \(\mathbb{N}^+ \times \mathbb{N}^+ \) with the property that if \(1 \leq j < k \) and \((n, k) \) is in this set then so is \((n, j) \);
Pred is the set of predicate symbols
\[A^n_k \]
where the \((n, k) \)s run over a subset of \(\mathbb{N}^+ \times \mathbb{N}^+ \) with the property that if \(1 \leq j < k \) and \((n, k) \) is in this set then so is \((n, j) \).

We let
\[g : S \rightarrow \mathbb{N} \]
be a function which is univalent and which has the property that the images of each of the six sets of symbols under \(g \) are primitive recursive. It is a simple matter to verify that such functions exist. Such a function is called a GÖDEL NUMBERING OF \(S \).

Let
\[\text{IsLeft, IsComma, IsRight}; \]
\[\text{IsNot, IsOr, IsAnd, IsImplies, IsIff, IsForAll, IsExists}; \]
\[\text{IsConst, IsVar}; \]
\[\text{IsFunc, IsPred} \]
be the logical functions of one argument defined by requiring that the have value 1 at \(x \in \mathbb{N} \) if and only if \(x = g(s) \) for some \(s \) in the set of symbols corresponding the the name of the function.
We define the function
\[\text{GetNargs} \]
of one argument with values in \(\mathbb{N} \) at \(x \in \mathbb{N} \) by requiring that \(\text{GetNargs}(x) = n \in \mathbb{N}^+ \) if and only if \(x = g(f^n_k) \) for some \(f^n_k \in \text{Func} \) or \(x = g(A^n_k) \) for some \(A^n_k \in \text{Pred} \) and that \(\text{GetNargs}(x) = 0 \) otherwise.

We define the function
\[\text{GetIndex} \]
of one argument with values in \(\mathbb{N} \) at \(x \in \mathbb{N} \) by requiring that \(\text{GetIndex}(x) = k \in \mathbb{N}^+ \) if and only if \(x = g(f^n_k) \) for some \(f^n_k \in \text{Func} \) or \(x = g(A^n_k) \) for some \(A^n_k \in \text{Pred} \) and that \(\text{GetNargs}(x) = 0 \) otherwise.

It follows easily that all these functions are primitive recursive.

2. Codes again.

Recall the function
\[\Gamma : \mathbb{N}^* \to \mathbb{N} \]
defined by setting \(\Gamma(\emptyset) = 0 \) and setting
\[\Gamma(x) = 2^n \Pi_{i=1}^n \text{Pth}(i)x_i \]
if \(n \in \mathbb{N} \) and \(x = (x_1, \ldots, x_n) \in \mathbb{N}^n \).

We called \(\Gamma(x) \) the code of \(x \). Recall that \(\Gamma \) is univalent with range equal \(\mathbb{N} \).

Proposition 2.1. Suppose \(n \in \mathbb{N} \) and \(x \in \mathbb{N}^n \). Then \(\Gamma(x) \) does not exceed \(2^n \text{Pth}(n)^n \). Moreover, if \(y \) is a subtuple of \(x \) then \(\Gamma(y) \) does not exceed \(\Gamma(x) \) with equality only if \(y = x \).

Exercise 2.1. Prove this.

Definition 2.1. Recall that \(S^* \) is the set of tuples of symbols. We define
\[c : S^* \to \mathbb{N} \]
as follows. Suppose \(s \in S^* \). If \(s \) is the empty tuple then \(c(s) = 0 \). If \(n \in \mathbb{N}^+ \) and \(s = (s_1, \ldots, s_n) \) then
\[c(s) = \Gamma(g(s_1), \ldots, g(s_n)) \]
here \(g(s_i) \) is the Gödel number of \(s_i, i = 1, \ldots, n \). We say, somewhat ambiguously, that \(c(s) \) is the code of \(s \).

We define
\[C : (S^*)^* \to \mathbb{N} \]
as follows. Suppose \(U \in (S^*)^* \). If \(U \) is the empty tuple then \(C(U) = 0 \). If \(N \in \mathbb{N}^+ \) and \(U = (U_1, \ldots, U_N) \) then
\[C(U) = \Gamma(c(U_1), \ldots, c(U_N)) \]
We say, somewhat ambiguously, that \(C(U) \) is the code of \(U \).

3. Terms.

Definition 3.1. Let
\[\text{Term} \]
be the logical function of one argument whose value at \(y \in \mathbb{N} \) is 1 if and only if \(y = c(u) \) for some term \(u \).

Theorem 3.1. Term is primitive recursive.
3.1. The proof. The remainder of this section is devoted to the proof of this Theorem.

3.1.1. Simple terms. For \(y \in \mathbb{N} \) let

\[
\text{SimpTerm}(y) = (\text{Len}(y) = 1) \land (\text{IsConst}(\text{Cmp}(y, 1)) \lor \text{IsVar}(\text{Cmp}(y, 1))).
\]

Evidently, SimpTerm is primitive recursive and

\[
\text{SimpTerm}(y) = 1 \text{ if and only if for some } u \in S^* \text{ with } y = c(u) \text{ there is } k \in \mathbb{N}^+ \text{ such that } u = (a_k) \text{ or } u = (x_k).
\]

3.1.2. Functional terms. We define the logical functions \(P_1, P_2, P_3, P_4, P_5 \) as well as the functions \(F_1, F_2, F_3, F_4, F_5 \) with arguments as indicated below as follows:

\[
\begin{align*}
P_1(y) &= \text{IsFunc}(\text{Cmp}(y, 1)), \\
P_2(y) &= \text{IsLeft}(\text{Cmp}(y, 2)), \\
P_3(y) &= \text{IsRight}(\text{Cmp}(y, \text{Len}(y))), \\
F_1(y) &= \text{GetNargs}(\text{Cmp}(y, 1)), \\
F_2(y) &= 2^{F_1(y)} P_{\text{th}}(F_1(y)) \text{Len}(y), \\
F_3(z, i) &= \text{Cmp}(z, i), \\
F_4(z, i) &= 1 + i + \sum_{1 < j < i} F_3(z, j), \\
P_5(y, z, i) &= \text{GetSubStr}(y, F_4(z, i) + 1, F_3(z, i)), \\
P_5(y, z, i) &= \text{GetSubStr}(y, F_4(z, i) + 1, F_3(z, i)), \\
P_4(y, z, i) &= \text{IsComma}(\text{Cmp}(y, F_4(z, i))), \\
P_5(y, z, i) &= \text{IsSubStr}(y, z, F_4(z, i) + 1, F_3(z, i))
\end{align*}
\]

for \(y, z, i \in \mathbb{N} \). Note that all these functions are primitive recursive.

Suppose \(n, k \in \mathbb{N}^+, t_i, i = 1, \ldots, n, \) are terms,

\[
(1) \quad u = f_k^n(t_1, \ldots, t_n) \quad \text{and} \quad y = c(u).
\]

We have

\[
|u| = \text{Len}(y) \geq 4
\]

as well as

\[
P_1(y) \land P_2(y) \land P_3(y) = 1
\]

and

\[
n = F_1(y).
\]

Let

\[
z = c(|t_1|, \ldots, |t_n|).
\]

Evidently

\[
0 < z = 2^n \Pi_{i=1}^n P_{\text{th}}(|t_i|) < 2^n p^{\text{Len}(y)} = F_2(y)
\]

where we have set

\[
p = P_{\text{th}}(\text{Len}(y)).
\]

We have

\[
|t_i| = F_3(z, i) \quad \text{for } 1 \leq i \leq n.
\]
Suppose $1 \leq i \leq n$. Let
\[I_i = 1 + i + \sum_{1 \leq j < i} |t_j| \]
and note that I_i is the index in u of the symbol immediately preceding t_i. It follows that
\[I_i = F_4(z, i), \]
\[P_4(y, z, i) = 1 \quad \text{if } 1 < i < n, \]
and
\[t_i = (u_{I_i+1}, \ldots, u_{I_i+|t_i|}). \]
This last equation implies
\[c(t_i) = P_5(y, z, i). \]
It follows that
\[(P_1(y) \land P_2(y) \land P_3(y)) \]
\[(\exists z_{0\leq z<F_5(y)}) \left(\right) \]
\[(\text{Len}(z) = F_1(y)) \]
\[\land \]
\[(\forall i_{1<i<F_5(y)}) P_4(z, i) \]
\[\land \]
\[(\forall i_{1\leq i<F_5(y)} (\text{Term}(F_5(y, z, i)) \land P_5(y, z, i)) \]
\[) \]
equals 1. Conversely, if this logical function has value 1 then y is the code of a term as in (1).
Finally, if $1 \leq i \leq n$,
\[\text{Term}(F_5(y, z, i)) = \alpha(\text{Term})(y, F_5(y, z, i)) \]
since $F_5(y, z, i) < y$; this is the case since t_i is a substring of u which is not equal u. That Term is primitive recursive follows from the Theorem on “course of values” recursion.