1. Recursive functions.

For each $n \in \mathbb{N}$ we let
\[\mathbb{N}^n \]
be $\{\emptyset\}$ if $n = 0$ and we let it be the set of n-tuples (x_1, \ldots, x_n) where $x_i \in \mathbb{N}$ for $i \in \{1, \ldots, n\}$. For $m, n \in \mathbb{N}$ we let
\[\mathbb{N}_m^n \]
be the set of f such that $f : \mathbb{N}^n \to \mathbb{N}^m$.

Note that
\[\mathbb{N}_0^0 \ni f \mapsto f(\emptyset) \in \mathbb{N}^m \]
is univalent with range \mathbb{N}^m; in what follows we shall identify \mathbb{N}_0^0 with \mathbb{N}^m via this mapping.

Definition 1.1. Suppose $A \subset \mathbb{N}^n$. We define
\[1_A \in \mathbb{N}^n \]
by setting
\[1_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \not\in A; \end{cases} \]
we call 1_A the **indicator function of** A.

Suppose $R \in \mathbb{N}_1^n$. We say R is **logical** if $R(x) \in \{0, 1\}$ whenever $x \in \mathbb{N}^n$. Evidently,
\[R = 1_{\{x \in \mathbb{N}^n : R(x) = 1\}} \]
if R is logical. We let
\[L^n \]
be the set of $R \in \mathbb{N}^n$ such that R is logical. Evidently, the members of L^n are the indicator functions of subsets of \mathbb{N}^n.

If $R, S \in L^n$ we define
\[\sim R, \ R \lor S, \ R \land S, \ R \to S, \ R \leftrightarrow S \]
in the natural way; we note that all these functions belong to L^n.

We define
\[Z \in \mathbb{N}_1^n \quad \text{and} \quad N \in \mathbb{N}_1^n \]
requiring that
\[Z(x) = 0 \quad \text{and} \quad N(x) = x + 1 \quad \text{for } x \in \mathbb{N}. \]
Whenever $n, i \in \mathbb{N}^+$ and $1 \leq i \leq n$ we define
\[U^n_i \in \mathbb{N}_1^n \]
by requiring that
\[U^n_i(x) = x_i \quad \text{for } x = (x_1, \ldots, x_n) \in \mathbb{N}^n. \]

Suppose $n, m \in \mathbb{N}$, $l_1, \ldots, l_m \in \mathbb{N}$ and $f_i \in \mathbb{N}_1^{n_{l_i}}$, $i = 1, \ldots, m$. We define
\[(f_1, \ldots, f_m) \in \mathbb{N}_{\sum_{i=1}^{m} l_i}^n \]
the **concatenation of** f_1, \ldots, f_m, by letting
\[(f_1, \ldots, f_m)(x) = (f_1(x), \ldots, f_m(x)) \quad \text{for } x \in \mathbb{N}^n. \]
Suppose \(m \in \mathbb{N} \), \(n_1, \ldots, n_m \in \mathbb{N} \), \(N_1, \ldots, N_m \in \mathbb{N} \) \(f_i \in \mathbb{N}_{n_i}^m \), \(i = 1, \ldots, m \). We define

\[
f_1 \times \cdots \times f_m \in \mathbb{N}_N^m \quad N = \sum_{i=1}^m n_i, \quad M = \sum_{i=1}^m N_i,
\]

the **product** \(f_1, \ldots, f_m \), by letting

\[
(f_1 \times \cdots \times f_m)(x_1, \ldots, x_m) = (f_1(x), \ldots, f_m(x)) \quad \text{for } x \in \mathbb{N}^{\sum_{i=1}^m n_i}.
\]

Whenever \(n \in \mathbb{N}_n^1 \), \(h \in \mathbb{N}(n+1,1) \) and \(f \in \mathbb{N}_n^{n+1} \) we say \(f \) is obtained from \(g \) and \(h \) by recursion if

\[
f(x,0) = g(x) \quad \text{for } x \in \mathbb{N}^n
\]

and

\[
f(x,y+1) = h(x,y,f(x,y)) \quad \text{for } y \in \mathbb{N} \text{ and } x \in \mathbb{N}^n.
\]

Suppose \(g \in \mathbb{N}_1^{n+1} \). We say \(g \) is **ample** if

\[
\{y \in \mathbb{N} : g(x,y) = 0\} \neq \emptyset \quad \text{for } x \in \mathbb{N}^n
\]

in which case we define

\[
\mu(g) \in \mathbb{N}_1^n
\]

by requiring that

\[
\mu(g)(x) = \min \{y : g(x,y) = 0\}.
\]

One calls \(\mu(g) \) the **minimalization** of \(g \). We will often write

\[
f(x) = \mu_y g(x,y) \quad \text{for } x \in \mathbb{N}^n
\]

if \(f = \mu(g) \).

Definition 1.2. (See page 120 in Mendelson.) Suppose \(m,n \in \mathbb{N}_m^n \). We say \(f \) is **primitive recursive** if one of the following holds:

(i) \(m = 1 = n \) and either \(f = \mathbb{Z} \) or \(f = \mathbb{N} \);
(ii) \(m = 1 \) and \(f = \mathbb{U}_i^n \) for some \(i \in \{1, \ldots, n\} \);
(iii) there are \(l \in \mathbb{N} \), \(g \in \mathbb{N}_l^n \) and \(h \in \mathbb{N}_m^l \) such that \(g \) and \(h \) are primitive recursive and \(f = g \circ h \);
(iv) there are \(n,m \in \mathbb{N}, l_1, \ldots, l_m \in \mathbb{N} \) and, for each \(i = 1, \ldots, m \), \(g_i \in \mathbb{N}^{n,l_i} \) such that \(g_i \) is primitive recursive and \(f = (g_1, \ldots, g_m) \);
(v) \(g \) and \(h \) are primitive recursive and \(f \) is obtained from \(g \) and \(h \) by recursion.

We say \(f \) is **recursive** if one of (i)-(iv) above hold with “primitive recursive” replaced by “recursive” or if \(m = 1 \) and there is \(g \in \mathbb{N}_1^{n+1} \) such that \(g \) is recursive, \(g \) is ample and \(f = \mu(g) \).

Note the obvious circularity in these definitions. The “right” way to do it is to set up a language with appropriate production, parse trees, etc. We leave that to the interested reader.

If \(A \subset \mathbb{N}^n \) we say \(A \) is **(primitive)recursive** if \(1_A \) is (primitive)recursive.
1.1. Let’s make lots of recursive functions. Suppose \(n \in \mathbb{N}^+ \) and \(c \in \mathbb{N}^m \). We let

\[
C^n_c(x) = c \quad \text{for } x \in \mathbb{N}^n.
\]

Suppose \(m \in \mathbb{N}^+ \). If \(m = 1 \) then \(C_0^n = \mathbb{Z} \circ U_1^n \). Since

\[
C^n_{c+1} = \mathbb{N} \circ C^n_c
\]

we see by induction on \(c \) that \(C^n_c \) is primitive recursive. If \(m > 1 \) then

\[
C^n_c = (C^n_{c_1}, \ldots, C^n_{c_m}).
\]

For \(x, y \in \mathbb{N} \) we let

\[
A(x, y) = x + y, \quad M(x, y) = xy, \quad P(x, y) = x^y;
\]

we leave to the reader the simple exercise of using induction to show that each of these functions is primitive recursive. By induction one also sees that the \(n \mapsto n! \) is primitive recursive.

I claim that \(1_0 \in \mathbb{N}^1 \) is primitive recursive; indeed,

\[
1_0(y + 1) = Z(y, 1_0(y))
\]

so our assertion follows by induction.

For \(x, y \in \mathbb{N} \) we let

\[
x \sim y = \begin{cases}
 x - y & \text{if } x \geq y, \\
 0 & \text{if } x < y.
\end{cases}
\]

Proposition 1.1. \((x, y) \mapsto x \sim y\) is primitive recursive.

Proof. We have \((x + 1) \sim 1 = U_1^2(x, x \sim 1)\) so \(x \mapsto x \sim 1 \) is primitive recursive by induction. Since \(x \sim (y + 1) = (x \sim y) \sim 1 \) our assertion follows by induction. \(\square\)

If \(R, S \in \mathbb{L}^n \) we have

\[
\sim R = 1 \sim R,
\]

\[
R \lor S = (R + S) \sim (R S),
\]

\[
R \land S = R S,
\]

\[
R \to S = R \lor S,
\]

\[
R \leftrightarrow S = (R \to S) \land (S \to R).
\]

It follows that these five functions are primitive recursive if \(R \) and \(S \) are. This implies that if \(A, B \subset \mathbb{N}^n \) are (primitive)recursive then so are \(A \cup B, A \cap B \) and \(A \sim B \).

We have

\[
(y \leq x) = 1_{\{0\}}(y \sim x),
\]

\[
(y \geq x) = (x \leq y),
\]

\[
(x = y) = ((x \leq y) \land (y \leq x))
\]

\[
(x < y) = ((x \leq y) \land (\sim (x = y)))
\]

\[
(x > y) = (y < x)
\]

so all these logical functions of two variables are primitive recursive.

If \(a \in \mathbb{N} \) then

\[
1_{\{a\}}(x) = (x = a)
\]
so \(1_{\{a\}}\) is primitive recursive. If \(a \in \mathbb{N}^n\) the
\[
1_{\{a\}} = \prod_{i=1}^{n} 1_{\{a_i\}}
\]
so \(1_{\{a\}}\) is primitive recursive.

If \(F\) is a finite subset of \(\mathbb{N}^n\) then
\[
1_F = \sum_{a \in F} 1_{\{a\}}
\]
is primitive recursive.

We have
\[
\max\{x, y\} = y + (x \sim y) \quad \text{and} \quad \min\{x, y\} = x + y - \max\{x, y\}
\]
so these functions are primitive recursive.

Since
\[
|x - y| = (x \sim y) + (y \sim x)
\]
this function is primitive recursive.

We let
\[
x \mod y \quad \text{and} \quad y/x
\]
be, respectively, the remainder after division of \(y\) by \(x\) and the quotient of division of \(y\) by \(x\). Since
\[
x \mod (y + 1) = N(x \mod y) + 1_{\mathbb{N}^+}(|x - N(x \mod y)|)
\]
and
\[
(y + 1)/x = (y/x) + 1_{\{0\}}(|x - N(x \mod y)|)
\]
we find that these functions are primitive recursive.

We will write
\[
x \equiv y \mod z
\]
if \(x \mod z = y \mod z\).

We let
\[
y|x = ((x \mod y) = 0)
\]
and note that \(y|x = 1\) if and only if \(y\) divides \(x\).

Suppose \(f \in \mathbb{N}_1^n\) is (primitive)recursive. Since
\[
\sum_{y \leq z} f(x, y) = \sum_{y \leq z} f(x, z) \quad \text{for} \quad x, z \in \mathbb{N}
\]
we find that
\[
(x, z) \mapsto \sum_{y \leq z} f(x, y) \quad \text{if (primitive)recursive.}
\]

It follows that
\[
D(y) = \sum_{x \leq y} 1_{\{0\}}(x \mod y),
\]
which is the number of divisors of \(y\), is primitive recursive. This in turn implies that the logical function
\[
Pr(x) = (D(x) = 2) \land (x \neq 0) \land (x \neq 1)
\]
is primitive recursive; note that \(Pr(x) = 1\) if and only if \(x\) is a prime.
Suppose $R \in \mathbb{L}^{n+1}$; consider
\[
\forall y < z \ y \ R(x, z), \quad \exists y < z \ y \ R(x, z), \quad \mu_{y < z} \ R(x, y);
\]
the definition of the first two as logical functions should be clear; the third is the function whose value at (x, z) is the least $y < z$ such that $R(x, y) = 1$ if there is such a value and is z if no such value exists. They equal
\[
\Pi_{y < z} R(x, z), \quad 0 < \sum_{y < z} R(x, z), \quad \sum_{y < z} \Pi_{u \leq y} R(x, z),
\]
respectively; it follows that they are (primitive)recursive if R is.

Theorem 1.1. Let
\[
P_{th} : \mathbb{N} \rightarrow \{ p \in \mathbb{N} : \Pr(p) = 1 \},
\]
be such that $P_{th}(0) = 2$ and
\[
P_{th}(n + 1) = \mu_{y \leq P_{th}(n) + 1} (P_{th}(n) < y) \land \Pr(y).
\]
Then P_{th} is primitive recursive and
\[
P_{th}(n + 1) = \min \{ p : \Pr(p) = 1 \text{ and } \Pr(n) < p \}.
\]

Proof. The point here is that if p is a prime and q is the first prime after p then $q \leq p! + 1$. \hfill \Box

For each $n \in \mathbb{N}$ we define
\[
\alpha : \mathbb{N}^2 \rightarrow \mathbb{N}
\]
by letting $\alpha(n, j) = 0$ if $n = 0$ and, if $n > 0$ letting
\[
\alpha(n, j) = \mu_{m < n} (P_{th}(j)^m \mid n) \land \sim (P_{th}(j)^{m+1} \mid n)
\]
and we define
\[
\lambda : \mathbb{N} \rightarrow \mathbb{N}
\]
be letting $\lambda(n) = 0$ if $n = 0$ and, if $n > 0$, letting
\[
\lambda(n) = \sum_{m \leq n} \Pr(m) \land (m \mid n) \land (n \neq 0).
\]
By virtue of the foregoing, these functions are primitive recursive and, if $n > 0$,
\[
n = \Pi_{i=0}^{\lambda(n)} P_{th}(i)^{\alpha(n, i)}.
\]
1.1.1. The function Γ. We let

$$N^* = \bigcup_{n=0}^{\infty} N^n.$$

We define

$$\Gamma : N^* \rightarrow N$$

by letting $\Gamma(\emptyset) = 0$ and letting

$$\Gamma(x) = 2^{n-1} \prod_{i=1}^{n} Pth(i)^{x_i} \quad \text{for } x \in N^n.$$

Thus Γ is univalent with range equal N. We say the $c \in N$ is the code of $x \in N^n$ if $\Gamma(x) = c$.

Definition 1.3. We let

$$\text{Len}(x) = \lambda(x) = \alpha(x, 0) \quad \text{for } x \in N.$$

We let

$$\text{Cmp}(x, i) = \alpha(x, i) \quad \text{for } x \in N.$$

We let

$$\text{Sum}(x, i) = \sum_{1 \leq j < i} \alpha(x, j) \quad \text{for } (x, i) \in N^2.$$

Note that these functions are primitive recursive.

It follows that if $n \in N^+$ and $x = (x_1, \ldots, x_n) \in N^n$ then

$$\text{Len}(x) = n;$$

$$x_i = \text{Cmp}(x, i), \quad 1 \leq i \leq n;$$

and

$$\text{Sum}(x, i) = \sum_{1 \leq j < i} x_j, \quad 1 \leq i \leq n.$$

Remark 1.1. The introduction of Len and Cmp is purely cosmetic.

Definition 1.4. We define the function

$$\text{GetSubStr} : N^3 \rightarrow N$$

as follows. Suppose $(x, i, l) \in N^3$; if $1 \leq i \leq \text{Len}(x)$, $0 < l$ and $i + l - 1 \leq \text{Len}(x)$ then

$$\text{GetSubStr}(x, i, l) = \Gamma(x_i, \ldots, x_{i+l-1});$$

otherwise $\text{GetSubStr}(x, i, l) = 0$.

We define the logical function

$$\text{IsSubStr} : N^4 \rightarrow \{0, 1\}$$

by requiring that $\text{IsSubStr}(x, y, i, l) = 1$ for $(x, y, i, l) \in N^4$ if and only if

$$\text{GetSubStr}(x, i, l) = y.$$

Proposition 1.2. GetSubStr and IsSubStr are recursive.

Exercise 1.1. Prove this.
1.1.2. "Course of values" recursion. See pp. 129 and 130 in Mendelson.

For \(f \in \mathbb{N}^{n+1} \) we define
\[
\Lambda(f) \in \mathbb{N}^{n+1}
\]
by letting \(\Lambda(f)(x, 0) = 0 \) and letting
\[
\Lambda(f)(x, y) = \Gamma(f(x, 0), \ldots, f(x, y - 1)) \quad \text{for } y > 0.
\]

Note that
\[
\Lambda(f)(x, y) = \Lambda(f)(x, y - 1)Pth(f(x, y)).
\]

Proposition 1.3. Suppose \(n \in \mathbb{N}, h(x, y, z), (x, y, z) \in \mathbb{N}^n \times \mathbb{N}^n \times \mathbb{N}, \) is (primitive)recursive and \(f(x, y), (x, y) \in \mathbb{N}^n \times \mathbb{N} \) is such that
\[
f(x, y) = h(x, y, \Lambda(f)(x, y)) \quad \text{for } (x, y) \in \mathbb{N}^n \times \mathbb{N}.
\]

Then \(\Lambda(f) \) and, consequently, \(f \) are (primitive)recursive.

Proof. We have
\[
\Lambda(f)(x, 0) = \Gamma(\emptyset) = 0
\]
and
\[
\Lambda(f)(x, y + 1) = \Lambda(f)(x, y)Pth(f(x, y)) = \Lambda(f)(x, y)Pth(h(x, y, \Lambda(f)(y))).
\]

For each \(x, y \in \mathbb{N} \) we define
\[
x * y \in \mathbb{N}
\]
to be the code of the concatenation of the tuple with code \(x \) with the tuple with code \(y \). One easily checks (see pp. 126 and 127 in Mendelson) that \((x, y) \mapsto x * y \) is primitive recursive and that
\[
(x * y) * z = x * (y * z) \quad \text{for } x, y, z \in \mathbb{N}.
\]

Example 1.1. (The Fibonacci sequence. Let \(f(0) = 0, f(1) = 1, f(2) = 1 \) and, for \(y \geq 3 \), let
\[
f(y) = f(y - 1) + f(y - 2) = \text{Cmp}(\Lambda(f)(y), y - 1) + \text{Cmp}(\Lambda(f)(y), y - 2).
\]

Let
\[
h(y, z) = (y = 1) + (y = 2) + \text{Cmp}(y, z \sim 1) + \text{Cmp}(y, z \sim 2) \quad \text{for } y, z \in \mathbb{N}.
\]

Then
\[
f(y) = h(y, \Lambda(f)(y)) \quad \text{for } y \in \mathbb{N}.
\]

It follows that \(f \) is primitive recursive.

1.2. **Gödel’s \(\beta \)-function.** Let
\[
\beta(x, y, z) = x \mod (1 + (z + 1)y) \quad \text{for } x, y, z \in \mathbb{N}.
\]

Note that \(\beta \) is primitive recursive.

Theorem 1.2. For any positive integer \(n \) and any \(k \in \mathbb{N}^n \) there exist \(b, c \in \mathbb{N} \) such that
\[
\beta(b, c, i) = k_i \quad \text{for } i \in \{1, \ldots, n\}.
\]

We need two lemmas.

Proof.
Lemma 1.1. Suppose \(a = (a_1, \ldots, a_n) \in \mathbb{Z}^n \),

\[
I = \left\{ \sum_{i=1}^{n} m_i a_i : m \in \mathbb{Z}^n \right\}
\]

and

\[
d = \min\{m : m \in I \text{ and } m > 0\}.
\]

Then

\[
I = \{ nd : n \in \mathbb{Z} \}.
\]

In particular, \(d \) is the greatest common divisor of \(a_1, \ldots, a_n \)
and there is \(m = (m_1, \ldots, m_n) \in \mathbb{Z}^n \) such that

\[
d = \sum_{i=1}^{n} m_i a_i.
\]

Proof. \(I \) is an ideal in the ring \(\mathbb{Z} \); that is, if \(x, y \in I \) the \(x + y \in I \)
and if \(x \in \mathbb{Z} \) and \(y \in I \) then \(xy \in I \). Let \(J = \{ nd : n \in \mathbb{Z} \} \). Evidently, \(J \subset I \). Suppose \(b \in I \)
and \(b > 0 \). By the Euclidean algorithm there are \(q, r \in \mathbb{N} \) such that

\[
b = qd + r \quad \text{and} \quad 0 \leq r < d.
\]

Were it the case that \(r > 0 \) we would have \(r = b - qd \in I \) which
contradicts the minimality of \(d \). If \(b \in I \) and \(b < 0 \) we find that \(-b = qd \) for some
\(q \in \mathbb{N} \) so \(b = (-q)d \). So \(J = I \), as desired. \(\square \)

Lemma 1.2. (Chinese remainder theorem.) Suppose \(x \in \mathbb{N}^n \) and

\[
(x_i, x_j) = 1 \quad \text{whenever} \quad 1 \leq i < j \leq n.
\]

Then for any \(y \in \mathbb{N}^n \) there is \(z \in \mathbb{N} \) such that

\[
z \equiv y_i \mod x_i, \quad i = 1, \ldots, n.
\]

Moreover, any two such \(z \)s differ by a multiple of \(X = x_1 \cdots x_n \).

Proof. Let \(w \in \mathbb{N}^n \) be such that \(X = w_1 x_1, i = 1, \ldots, n \). Then \((w_1, x_1) = 1, \)
\(i = 1, \ldots, n \), so, by the preceding Lemma, there is an integer \(z_i \) such that \(w_i z_i \equiv 1 \mod x_i \).

\[
z = \sum_{i=1}^{n} w_i z_i y_i.
\]

For any \(1 \leq i \leq n \) we have

\[
z \equiv w_i z_i \equiv 1 \mod y_i,
\]

as desired.

If \(z' \) is another such integer, the difference \(z - z' \) is divisible by each \(x_i \) and,
therefore, divisible by \(X \). \(\square \)

Proof of the Theorem. Let \(j \) be the largest of \(n \) and \(k_1, \ldots, k_n \) and let \(c = j! \).

For each \(i = 1, \ldots, n \) let \(u_i = 1 + (i + 1)c \).

Suppose \(1 \leq l < m \leq n \). Suppose \(p \) were a prime dividing both \(u_l \) and \(u_m \). Then
\(p \) would divide \((m - l)c \). Since \(1 \leq m - l < n < j \) this would imply that \(p \) would
divide \(j! = c \). But that would imply \(p \) divides 1. Thus \(u_l \) and \(u_m \) are relatively
prime.

By the Chinese Remainder Theorem there is a natural number \(b < u_1 \cdots u_n \) such
that \(b \equiv k_i \mod u_i, i = 1, \ldots, n \), proving the Theorem. \(\square \)