1. Arithmetic modulo 2.

Let

\(b = \{0, 1\}. \)

(The \(b \) stands for *bits*.)

We define the binary operations \(+ \) and \(\ast \) on \(b \) by the following tables:

\[
\begin{array}{c|c|c}
 a & b & a + b \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\quad
\begin{array}{c|c|c}
 a & b & a \ast b \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
\end{array}
\]

We note that \(b \) is **field** with respect to these operations. One frequently writes

\[ab \]

instead of \(a \ast b \).

We define the unary operation \(\sim \) on \(b \) by the following table.

\[
\begin{array}{c|c}
 a & \sim a \\
 \hline
 1 & 0 \\
 0 & 1 \\
\end{array}
\]

Note that \(\sim \) is the additive inverse in the field \(b \).

We define the binary operations \(\lor \) and \(\land \) on \(b \) by the following tables:

\[
\begin{array}{c|c|c}
 a & b & a \lor b \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 1 \\
\end{array}
\quad
\begin{array}{c|c|c}
 a & b & a \land b \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
\end{array}
\]

Note that \(\land \) equals \(\ast \).

We define the binary operations \(\to \) and \(\leftrightarrow \) on \(b \) by the following tables:

\[
\begin{array}{c|c|c}
 a & b & a \to b \\
 \hline
 0 & 0 & 1 \\
 0 & 1 & 1 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
\end{array}
\quad
\begin{array}{c|c|c}
 a & b & a \leftrightarrow b \\
 \hline
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
\end{array}
\]

Check that the following hold for \(a, b \in b \):

\[
\begin{align*}
 a \lor b &= ab + a + b; \\
 a \land b &= ab; \\
 \sim a &= a + 1; \\
 a \to b &= ab + a + 1; \\
 a \leftrightarrow b &= a + b + 1;
\end{align*}
\]
and that
\[a \cdot b = \sim(\sim a \lor \sim b) \]
\[a + b = \sim((\sim a \lor b) \lor (\sim \sim b \lor a)) \].

2. Truth functions.

Let \(X \) be a set disjoint from the set \(P \) consisting of the symbols
\[\text{expr} \sim \lor \land \rightarrow \iff \]

Proposition 2.1. Suppose \(A \in p(X) \) and \(B \) results by replacing each occurrence of a member of \(X \) in \(A \) by a member of \(p(X) \). Then \(B \in p(X) \).

Proof. Just grow the tree parsing \(A \). □

Theorem 2.1. There is one and only way to assign to each \(A \in p(X) \) a function \(t_A : 2^X \rightarrow \{0, 1\} \) in such a way that
\[
(1) \quad t_{\sim A} = \sim t_A; \\
t_{A \lor B} = t_A \lor t_B; \\
t_{A \land B} = t_A \land t_B; \\
t_{A \rightarrow B} = t_A \rightarrow t_B; \\
t_{A \iff B} = t_A \iff t_B.
\]

whenever \(A, B \in p(X) \).

Proof. This is a straightforward consequence of the uniqueness of the parse tree for any \(A \in p(X) \) and our formulae for arithmetic modulo 2. □

Definition 2.1. We say \(A \in p(X) \) is a tautology if \(t_A(A) = 1 \) for all \(A \subset X \).

Definition 2.2. Suppose \(\Gamma \subset p(X) \) and \(B \in p(X) \) We write
\[
\Gamma \models B
\]

and say \(B \) is a tautological consequence of \(\Gamma \) if whenever \(T \subset X \)
\[
t_A(T) = 1 \text{ for all } A \in \Gamma \Rightarrow t_B(T) = 1.
\]

Example 2.1. Suppose \(A, B \in p(X) \). Then
\[
\{A, (A \rightarrow B)\} \models B.
\]

Indeed, suppose \(T \subset X \), \(t_A(T) = 1 \) and \(t_{(A \rightarrow B)}(T) = 1 \).
To see this, consider the table
Here is another way:

\[1 = t_A(T)t_{(A \rightarrow B)}(T) = t_A(T)(t_A(T)t_B(T) + t_A(T) + 1) = t_B(T) + 1 + 1 = t_B(T). \]