1. Arithmetic modulo 2.

Let

$$\mathbf{b} = \{0, 1\}.$$

(The **b** stands for bits.)

We define the binary operations + and * on \mathbf{b} by the following tables:

a	b	a+b
0	0	0
0	1	1
1	0	1
1	1	0

a	b	a * b
0	0	0
0	1	0
1	0	0
1	1	1

We note that $\mathbf b$ is **field** with respect to these operations. One frequently writes

$$ab$$
 instead of $a*b$.

We define the unary operation \sim on **b** by the following table.

a	$\sim a$
1	0
0	1

Note that \sim is the additive inverse in the field **b**.

We define the binary operations \vee and \wedge on **b** by the following tables:

a	b	$a \lor b$
0	0	0
0	1	1
1	0	1
1	1	1

a	b	$a \wedge b$
0	0	0
0	1	0
1	0	0
1	1	1

Note that \land equals *.

We define the binary operations \rightarrow and \leftrightarrow on $\mathbf b$ by the following tables:

a	b	$a \rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

	7	,
a	b	$a \leftrightarrow b$
0	0	1
0	1	0
1	0	0
1	1	1

Check that the following hold for $a, b \in \mathbf{b}$:

$$\begin{aligned} a \vee b &= ab + a + b; \\ a \wedge b &= ab; \\ \sim a &= a + 1; \\ a \rightarrow b &= ab + a + 1; \\ a \leftrightarrow b &= a + b + 1; \end{aligned}$$

and that

$$a * b = \sim (\sim a \lor \sim b)$$

$$a + b = \sim ((\sim a \lor b) \lor (\sim \sim b \lor a)).$$

2. Truth functions.

Let X be a set disjoint from the set

P

consisting of the symbols

$$\mathbf{expr} \quad \sim \quad \lor \quad \land \quad \rightarrow \quad \leftrightarrow \quad$$

Proposition 2.1. Suppose $A \in \mathbf{p}(X)$ and B results by replacing each occurrence of a member of X in A by a member of $\mathbf{p}(X)$. Then $B \in \mathbf{p}(X)$.

Proof. Just grow the tree parsing A.

Theorem 2.1. There is one and only way to assign to each $A \in \mathbf{p}(X)$ a function

$$\mathbf{t}_A: 2^X \to \{0,1\}$$

in such a way that

$$\mathbf{t}_{(x)}(T) = \begin{cases} 1 & x \in T, \\ 0 & x \notin T; \end{cases}$$

whenever $x \in X$ and $T \subset X$ and

$$\mathbf{t}_{\sim A} = \sim \mathbf{t}_{A};$$

$$\mathbf{t}_{(A \vee B)} = \mathbf{t}_{A} \vee \mathbf{t}_{B};$$

$$\mathbf{t}_{(A \wedge B)} = \mathbf{t}_{A} \wedge \mathbf{t}_{B};$$

$$\mathbf{t}_{(A \rightarrow B)} = \mathbf{t}_{A} \wedge \mathbf{t}_{B};$$

$$\mathbf{t}_{(A \leftrightarrow B)} = \mathbf{t}_{A} \rightarrow \mathbf{t}_{B};$$

$$\mathbf{t}_{(A \leftrightarrow B)} = \mathbf{t}_{A} \leftrightarrow \mathbf{t}_{B}.$$

whenever $A, B \in \mathbf{p}(X)$.

Proof. This is a straightforward consequence of the uniqueness of the parse tree for any $A \in \mathbf{p}(X)$ and our formulae for arithmetic modulo 2.

Definition 2.1. We say $A \in \mathbf{p}(X)$ is a **tautology** if $\mathbf{t}_A(A) = 1$ for all $A \subset X$.

Definition 2.2. Suppose $\Gamma \subset \mathbf{p}(X)$ and $B \in \mathbf{p}(X)$ We write

$$\Gamma \models B$$

and say B is a tautological consequence of Γ if whenever $T \subset X$

$$\mathbf{t}_A(T) = 1 \text{ for all } A \in \Gamma \implies \mathbf{t}_B(T) = 1.$$

Example 2.1. Suppose $A, B \in \mathbf{p}(X)$. Then

$${A, (A \rightarrow B)} \models B.$$

Indeed, suppose $T \subset X$, $\mathbf{t}_A(T) = 1$ and $\mathbf{t}_{(A \to B)}(T) = 1$. To see this, consider the table

A	B	$(A \rightarrow B)$
0	0	1
0	1	0
1	0	0
1	1	1

Here is another way:

$$1=\mathbf{t}_A(T)\mathbf{t}_{(A\to B)}(T)=\mathbf{t}_A(T)(\mathbf{t}_A(T)\mathbf{t}_B(T)+\mathbf{t}_A(T)+1)=\mathbf{t}_B(T)+1+1=\mathbf{t}_B(T).$$