1. MODEL EXISTENCE THEOREM.

We fix a first order logic F such that

C #0.
We let S be the set of statements of F and we suppose
rcs.
We let
VFT

be the set of variable free terms. For each s € VFT we let
[s]={te VFT:TF (s=1t)}.
We have proved that
(i) s € [s];
(i) seft]if t € [s];
(ili) s € [u] if ¢ € [s] and u € [¢].
That is, {(s,t) € VFT : t € [s]} is an equivalence relation on bfVFT} and {][s] :
s € VFT} is the set of equivalence classes.
We let
D ={[s] : s € VFT}.
We define
C:C—D

by letting C)(c) = [¢] for c € C.
Proposition 1.1. There is one and only one function
F
with domain F such that for each if n € N* and f € F,, then
F(f): D" —- D
and
F(H(s1]y---s[8n)) = [f(s1,...,8,)] whenever sq,89,...,8, € VFT.
There is one and only one function
R
with domain R such that for each if n € NT and r € R,, then
R(r): D" — {0,1}
and
R(r)([s1],---,[sn]) =1 & T Fr(s1,...,8,) whenever s1,52,...,8, € VFT.
Proof. This is a direct consequence of the Corollaries of the Equality Theorem. [

Definition 1.1. We call
Z=(D,C,F,R)

the canonical interpretation of F with respect to I'.
Proposition 1.2. Suppose o € DX and t € VFT. Then

to =[t] forte VFT.
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Proof. The Proposition holds trivially if ¢t = ¢ € C'. Now induct on the depth of a
parse tree for t. (I

Corollary 1.1. Suppose s,t € VFT. Then
F'k(s=t) & (s=t)is true in Z.
Proof. One need only observe that
tmp(a) =1 & so=ta & [s]=]t] & I'F(s=1)
for any o € DX. ]
Corollary 1.2. Suppose n € N*, r € R, and s1,...,5, € VFT. Then
CEr(syy... 80) © 7(81,...,8y,) is true in Z.
Proof. One need only observe that
br(srsn) (@) = 1

< R((S1)ay---s(Sn)a) =1

< R([s1],..-,[sn]) =1

< TFr(sy,...,8n)
for any o € DX. (]

Proposition 1.3. Suppose A is a statement. Then there is a statement B which
contains no occurrence of 3, A, —, <> such that
F (A< B).
Proof. Let B be the set of statements B which contain no occurrence of 3, A, —, <.
We induct on the depth of a parse tree for A. If A € B we can take B = A since
(~AVA)
(A—A4)
(A=A NA—- A
(4 A)
is a proof of (A < A). In particular, this will be the case of A is atomic.

Suppose A =~ C for some C' € §. By induction, there is D € B such that
F (C < D) Then B =~ D € B and

(C < D)
is a proof of (A < B).

Suppose A = x C for some x € X and C € S. By induction there is D € B
such that - (C < D). Let B=~VYxz D. Then B € B

FazC o~V ~O)
(C = D)
(~ C o D)
Ve ~C < Vax ~D)
(Vo ~C -~V ~ D)
is a proof of (A < B).



3

Suppose A = (C o D) where C, D € S and o € {V, A\, —, < }. By induction there
are E, F € B such that F (C < E) and - (D < F). Let

(EVF) ifo=v,
5 )~ (v BV~ ) if 0= A,
(~EVF) if o =—,
~(~(~EVFE)NV~(~FVE)) ifo=e.
Then B € B and - (A < B). O

Definition 1.2. We say I' is Henkin if for each A € S such that free(A) = {z}
for some x € X and
I'F~Vz A

there is t € VFT such that
P '_N Axﬂt.
(Note that t € subs(z, A).) One calls such a t a witness to ~ Vx A.

Theorem 1.1. (Henkin) Suppose I is consistent, complete and Henkin. Then 7
is a model for I'.

Proof. Let
A={AeS:THA and A is true in T};
B={AeS:THA and A is false in 7};
C={AeS:TF~A and A is true in Z};
D={AecS:TF~A and A is false in 7}.

Since T' is complete and consistent we find that for any A € S exactly one of

(1) 'A or '+t~ A
holds. Also, if A € S and A is a sentence exactly one of
(2) AistrueinZ or AisfalseinZ

holds; this is because if o, 3 € DX then ta(a) = tp(3) since o and 3 agree on
free(A) = (. Thus if A is a sentence then A belongs to exactly one of A, B,C or D.

Lemma 1.1. Suppose A is a sentence. Then A € AUD.

Proof. By virtue of the preceding Proposition we may assume that A has no oc-
currence of 3, A, — or <». We induct on the number of occurrences of ~,V and V
in A.

Part One. Suppose A is atomic. A preceding Proposition implies A € AU D.

Part Two. Suppose B € S and A =~ B. Then B is a sentence and so, by
induction, B € AUD. In case B € A we find that A € D and in case B € D we
find that A € A.

Part Three. Suppose A = (BV C). Then B and C are sentences and so, by
induction, B and C belong to AUD. In case B € A and C € Aor B € A and
CeDof BeDandC € A we find that A € A. In case B € D and C € D we find
that A € D.

Part Four. Suppose A = Vz B for some z € X and some statement B such
that « ¢ free(B). Then B is a sentence and, by induction, B € AUD. Since B is
a sentence we have t4 = tp.



In case B € A we have I' b A by the closure theorem for provability (p. 172) so
Aec A

In case B € D we have F~ A since if it were the case that I' = A we would have
I' F B by the closure theorem for provability. Thus A € D.

Part Five. Suppose A = Vz B for some x € X and some statement B such
that = € free(B).

Suppose I' = A. Let a € D¥; we need to show that t4(a) = 1. So suppose
B € DX and 3 ~, a. Let t € VFT be such that a(x) = [t]. Then t, = z, so
to = o = g which, by a theorem we have already proved on substitution, implies
tp,_,(a) = tp(B). Moreover,

VaB
(Ve B — By_t)
Bz—>t

gives I' - B, ;. Now B,_,; is a sentence to which the inductive hypothesis applies
80 By_ is true in Z and, therefore, tp, ,(a) = 1. Thus tp(f) = 1s0 A € A, as
desired.
Suppose I' F~ A which is to say that F~ Vz B. Since I' is Henkin there is
t € VFT such that I' F~ B,_,;. Now B,_,; is a sentence to which the inductive
hypothesis applies so B, is false in Z. The substitution axiom (Vz B — B,_)
implies ~ A is false in Z. Thus A € D.
|

Now suppose I' = A. Then I' - A’ where A’ is a closure of A. By the Lemma, A’
is true in Z. By the Closure Theorem for Interpretations (p. 152), A is true in Z.
O

Theorem 1.2. (Theorem on constants, p. 194) Suppose A € S;T'F A;ce C
is such that ¢ does not occur in A or in any statement of I'; and x € X is such that
I'A,_.. Then AFVzA.

Proof. Suppose Aq,...,A, is a primary proof of A,_.. using I'. Let y € X be such
that y does not occur in Ay,...,A, or A. Let B;, i = 1,...,n be obtained by
replacing each occurence of ¢ in A; with y. Observe that B; € Sfori=1,...,n.

I claim that By,..., B, is a proof of A,_,,. First, observe that B, = A;_.,.
Next observe that B; = A; if A; € I'. We leave it as an exercise for the reader to
verify that if j € {1,...,n}, I C {i € {1,...,n} : i < j} and ({4; : i € I}, 4j)
is a rule of inference then so is ({B; : ¢ € I}, B;); it will be necessary to use the
hypothesis that ¢ does not occur in A or in any Ay,...,A,. Thus ' A,_,.

Appending Vy Ay .y, (Vy Agy — A), A,V A to By,...,B, is a proof of Vo A
using I'; U

Corollary 1.3. Suppose I' is consistent, A € S, z € X, free(A) = {z} and
I' F~ Vx A. Suppose ¢ € C and ¢ does not occur in A or in any statement of I'.
Then I'U{~ A,_..} is consistent.

Proof. Suppose, contrary to the Corollary, I' U {~ A,_,.} is not consistent. Then
Pu{~ A,—.} F A,_.. By the Deduction Theorem, I' F (~ A,_. — Az_c).
This implies I' + A,_,.. The Theorem on Constants now gives I' - Vx A which
contradicts the consistency of I'. O
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Theorem 1.3. (Lindenbaum-Henkin) Suppose I is consistent and c¢ is a univa-
lent sequence in C' such that no member of the range of ¢ occurs in any statement
of I'. Suppose also that C, X, F, R are countable. Then there is a set of formulas
A such that I' C A and A is consistent, complete and Henkin.

Proof. We let A be the set of (A, A) such that A C S, 4 € S,
AF Aand A=Vz B for no (z,B) € X x § with free(B) = {z};
we let B be the set of (A, A) such that A C S, A€ S,
A+ Aand A=V B for some (z,B) € X x § with free(B) = {z};
we let C be the set of (A, A) such that
it is not the case that A - A.

Note that the set of sentences is countably infinite. Let A be an enumeration of
the set of sentences.

We construct a sequence I',, n € N in S and a sequence N in N inductively as
follows. We let I'g = I' and we let Ng = 0. For each n € N we require that

N, if (T, A,) € A;
Nyt1 =4 N,+1 if (I, - A4,) €B;

N, if (T, An) €C.
and that
T, if (T, An) € A;
Pop1=qT0U{~Ascy, } if (Tn,An) € B;
r,u{~A,} if (T, A,) €C.
See page 196 for the remaining details of the proof. O

For the remainder of this section let us suppose C' C C’ and that F’ is the first
order logic obtained from F by replacing C' with C”.

Theorem 1.4. (Extension by constants. p. 196) For each A € S we have
'z A & I'kg A
Moreover,
I is consistent with respect to F < T is consistent with respect to F.
Proof. See page 196. O

Theorem 1.5. Model existence theorem. Suppose I is consistent. Then I" has
a model.

Proof. See page 197. (]



