1. Model existence theorem.

We fix a first order logic ${\mathcal F}$ such that

 $C \neq \emptyset$.

We let \mathcal{S} be the set of statements of \mathcal{F} and we suppose

 $\Gamma \subset \mathcal{S}.$

We let

VFT

be the set of variable free terms. For each $s \in \mathbf{VFT}$ we let

$$[s] = \{t \in \mathbf{VFT} : \Gamma \vdash (s = t)\}.$$

We have proved that

(i) $s \in [s]$; (ii) $s \in [t]$ if $t \in [s]$; (iii) $s \in [u]$ if $t \in [s]$ and $u \in [t]$. That is, $\{(s,t) \in \mathbf{VFT} : t \in [s]\}$ is an equivalence relation on bfVFT and $\{[s] : s \in \mathbf{VFT}\}$ is the set of equivalence classes.

We let

$$D = \{ [s] : s \in \mathbf{VFT} \}.$$

We define

$$\mathbf{C}: C \to D$$

by letting $\mathbf{C}(c) = [c]$ for $c \in C$.

Proposition 1.1. There is one and only one function

 \mathbf{F}

with domain **F** such that for each if $n \in \mathbb{N}^+$ and $f \in F_n$ then

$$\mathbf{F}(f): D^n \to D$$

and

$$\mathbf{F}(f)([s_1],\ldots,[s_n]) = [f(s_1,\ldots,s_n)] \quad \text{whenever } s_1,s_2,\ldots,s_n \in \mathbf{VFT}.$$

There is one and only one function

\mathbf{R}

with domain **R** such that for each if $n \in \mathbb{N}^+$ and $r \in R_n$ then

$$\mathbf{R}(r): D^n \to \{0,1\}$$

and

 $\mathbf{R}(r)([s_1],\ldots,[s_n]) = 1 \iff \Gamma \vdash r(s_1,\ldots,s_n) \text{ whenever } s_1,s_2,\ldots,s_n \in \mathbf{VFT}.$

Proof. This is a direct consequence of the Corollaries of the Equality Theorem. \Box

Definition 1.1. We call

$$\mathcal{I} = (D, \mathbf{C}, \mathbf{F}, \mathbf{R})$$

the canonical interpretation of \mathcal{F} with respect to Γ .

Proposition 1.2. Suppose $\alpha \in D^X$ and $t \in \mathbf{VFT}$. Then

$$t_{\alpha} = [t] \text{ for } t \in \mathbf{VFT}.$$

Corollary 1.1. Suppose $s, t \in VFT$. Then

 $\Gamma \vdash (s = t) \iff (s = t) \text{ is true in } \mathcal{I}.$

Proof. One need only observe that

$$\mathbf{t}_{(s=t)}(\alpha) = 1 \iff s_{\alpha} = t_{\alpha} \iff [s] = [t] \iff \Gamma \vdash (s=t)$$

for any $\alpha \in D^X$.

Corollary 1.2. Suppose $n \in \mathbb{N}^+$, $r \in R_n$ and $s_1, \ldots, s_n \in \mathbf{VFT}$. Then

 $\Gamma \vdash r(s_1, \ldots, s_n) \Leftrightarrow r(s_1, \ldots, s_n)$ is true in \mathcal{I} .

Proof. One need only observe that

$$\mathbf{t}_{r(s_1,\dots,s_n)}(\alpha) = 1$$

$$\Leftrightarrow \mathbf{R}((s_1)_{\alpha},\dots,(s_n)_{\alpha}) = 1$$

$$\Leftrightarrow \mathbf{R}([s_1],\dots,[s_n]) = 1$$

$$\Leftrightarrow \Gamma \vdash r(s_1,\dots,s_n)$$

for any $\alpha \in D^X$.

Proposition 1.3. Suppose A is a statement. Then there is a statement B which contains no occurrence of $\exists, \land, \rightarrow, \leftrightarrow$ such that

$$\vdash (A \leftrightarrow B).$$

Proof. Let \mathcal{B} be the set of statements B which contain no occurrence of $\exists, \land, \rightarrow, \leftrightarrow$. We induct on the depth of a parse tree for A. If $A \in \mathcal{B}$ we can take B = A since

$$(\sim A \lor A)$$
$$(A \to A)$$
$$(A \to A) \land (A \to A)$$
$$(A \leftrightarrow A)$$

is a proof of $(A \leftrightarrow A)$. In particular, this will be the case of A is atomic.

Suppose $A = \sim C$ for some $C \in S$. By induction, there is $D \in B$ such that $\vdash (C \leftrightarrow D)$ Then $B = \sim D \in B$ and

$$(C \leftrightarrow D)$$
$$(\sim C \leftrightarrow \sim D)$$

is a proof of $(A \leftrightarrow B)$.

Suppose $A = \exists x C$ for some $x \in X$ and $C \in S$. By induction there is $D \in B$ such that $\vdash (C \leftrightarrow D)$. Let $B = \sim \forall x D$. Then $B \in B$

$$(\exists x C \leftrightarrow \sim \forall x \sim C)$$
$$(C \leftrightarrow D)$$
$$(\sim C \leftrightarrow \sim D)$$
$$(\forall x \sim C \leftrightarrow \forall x \sim D)$$
$$(\sim \forall x \sim C \leftrightarrow \forall x \sim D)$$

is a proof of $(A \leftrightarrow B)$.

Suppose $A = (C \circ D)$ where $C, D \in S$ and $o \in \{\lor, \land, \rightarrow, \leftrightarrow\}$. By induction there are $E, F \in \mathcal{B}$ such that $\vdash (C \leftrightarrow E)$ and $\vdash (D \leftrightarrow F)$. Let

$$B = \begin{cases} (E \lor F) & \text{if } o = \lor, \\ \sim (\sim E \lor \sim F) & \text{if } o = \land, \\ (\sim E \lor F) & \text{if } o = \rightarrow, \\ \sim (\sim (\sim E \lor F) \lor \sim (\sim F \lor E)) & \text{if } o = \leftrightarrow. \end{cases}$$

Then $B \in \mathcal{B}$ and $\vdash (A \leftrightarrow B)$.

Definition 1.2. We say Γ is **Henkin** if for each $A \in S$ such that $\mathbf{free}(A) = \{x\}$ for some $x \in X$ and

$$\Gamma \vdash \sim \forall \, x \, A$$

there is $t \in \mathbf{VFT}$ such that

$$\Gamma \vdash \sim A_{x \to t}$$

(Note that $t \in \mathbf{subs}(x, A)$.) One calls such a t a witness to $\sim \forall x A$.

Theorem 1.1. (Henkin) Suppose Γ is consistent, complete and Henkin. Then \mathcal{I} is a model for Γ .

Proof. Let

 $\mathcal{A} = \{ A \in \mathcal{S} : \Gamma \vdash A \text{ and } A \text{ is true in } \mathcal{I} \};$ $\mathcal{B} = \{ A \in \mathcal{S} : \Gamma \vdash A \text{ and } A \text{ is false in } \mathcal{I} \};$ $\mathcal{C} = \{ A \in \mathcal{S} : \Gamma \vdash \sim A \text{ and } A \text{ is true in } \mathcal{I} \};$ $\mathcal{D} = \{ A \in \mathcal{S} : \Gamma \vdash \sim A \text{ and } A \text{ is false in } \mathcal{I} \}.$

Since Γ is complete and consistent we find that for any $A \in \mathcal{S}$ exactly one of

(1)
$$\Gamma \vdash A \quad \text{or} \quad \Gamma \vdash \sim A$$

holds. Also, if $A \in \mathcal{S}$ and A is a sentence exactly one of

(2)
$$A \text{ is true in } \mathcal{I} \text{ or } A \text{ is false in } \mathcal{I}$$

holds; this is because if $\alpha, \beta \in D^X$ then $\mathbf{t}_A(\alpha) = \mathbf{t}_B(\beta)$ since α and β agree on $\mathbf{free}(A) = \emptyset$. Thus if A is a sentence then A belongs to exactly one of $\mathcal{A}, \mathcal{B}, \mathcal{C}$ or \mathcal{D} .

Lemma 1.1. Suppose A is a sentence. Then $A \in \mathcal{A} \cup \mathcal{D}$.

Proof. By virtue of the preceding Proposition we may assume that A has no occurrence of $\exists, \land, \rightarrow$ or \leftrightarrow . We induct on the number of occurrences of \sim, \lor and \forall in A.

Part One. Suppose A is atomic. A preceding Proposition implies $A \in \mathcal{A} \cup \mathcal{D}$.

Part Two. Suppose $B \in S$ and $A = \sim B$. Then B is a sentence and so, by induction, $B \in A \cup D$. In case $B \in A$ we find that $A \in D$ and in case $B \in D$ we find that $A \in A$.

Part Three. Suppose $A = (B \lor C)$. Then B and C are sentences and so, by induction, B and C belong to $\mathcal{A} \cup \mathcal{D}$. In case $B \in \mathcal{A}$ and $C \in \mathcal{A}$ or $B \in \mathcal{A}$ and $C \in \mathcal{D}$ of $B \in \mathcal{D}$ and $C \in \mathcal{A}$ we find that $A \in \mathcal{A}$. In case $B \in \mathcal{D}$ and $C \in \mathcal{D}$ we find that $A \in \mathcal{D}$.

Part Four. Suppose $A = \forall x B$ for some $x \in X$ and some statement B such that $x \notin \mathbf{free}(B)$. Then B is a sentence and, by induction, $B \in \mathcal{A} \cup \mathcal{D}$. Since B is a sentence we have $\mathbf{t}_A = \mathbf{t}_B$.

In case $B \in \mathcal{A}$ we have $\Gamma \vdash A$ by the closure theorem for provability (p. 172) so $A \in \mathcal{A}$.

In case $B \in \mathcal{D}$ we have $\vdash \sim A$ since if it were the case that $\Gamma \vdash A$ we would have $\Gamma \vdash B$ by the closure theorem for provability. Thus $A \in \mathcal{D}$.

Part Five. Suppose $A = \forall x B$ for some $x \in X$ and some statement B such that $x \in \mathbf{free}(B)$.

Suppose $\Gamma \vdash A$. Let $\alpha \in D^X$; we need to show that $\mathbf{t}_A(\alpha) = 1$. So suppose $\beta \in D^X$ and $\beta \sim_x \alpha$. Let $t \in \mathbf{VFT}$ be such that $\alpha(x) = [t]$. Then $t_\alpha = x_\alpha$ so $t_\alpha = x_\alpha = x_\beta$ which, by a theorem we have already proved on substitution, implies $\mathbf{t}_{B_{x\to t}}(\alpha) = \mathbf{t}_B(\beta)$. Moreover,

$$\forall x B (\forall x B \to B_{x \to t}) B_{x \to t}$$

gives $\Gamma \vdash B_{x \to t}$. Now $B_{x \to t}$ is a sentence to which the inductive hypothesis applies so $B_{x \to t}$ is true in \mathcal{I} and, therefore, $\mathbf{t}_{B_{x \to t}}(\alpha) = 1$. Thus $\mathbf{t}_B(\beta) = 1$ so $A \in \mathcal{A}$, as desired.

Suppose $\Gamma \vdash \sim A$ which is to say that $\vdash \sim \forall x B$. Since Γ is Henkin there is $t \in \mathbf{VFT}$ such that $\Gamma \vdash \sim B_{x \to t}$. Now $B_{x \to t}$ is a sentence to which the inductive hypothesis applies so $B_{x \to t}$ is false in \mathcal{I} . The substitution axiom $(\forall x B \to B_{x \to t})$ implies $\sim A$ is false in \mathcal{I} . Thus $A \in \mathcal{D}$.

Now suppose $\Gamma \vdash A$. Then $\Gamma \vdash A'$ where A' is a closure of A. By the Lemma, A' is true in \mathcal{I} . By the Closure Theorem for Interpretations (p. 152), A is true in \mathcal{I} .

Theorem 1.2. (Theorem on constants, p. 194) Suppose $A \in S$; $\Gamma \vdash A$; $c \in C$ is such that c does not occur in A or in any statement of Γ ; and $x \in X$ is such that $\Gamma \vdash A_{x \to c}$. Then $A \vdash \forall x A$.

Proof. Suppose A_1, \ldots, A_n is a primary proof of $A_{x\to c}$ using Γ . Let $y \in X$ be such that y does not occur in A_1, \ldots, A_n or A. Let B_i , $i = 1, \ldots, n$ be obtained by replacing each occurence of c in A_i with y. Observe that $B_i \in S$ for $i = 1, \ldots, n$.

I claim that B_1, \ldots, B_n is a proof of $A_{x \to y}$. First, observe that $B_n = A_{x \to y}$. Next observe that $B_i = A_i$ if $A_i \in \Gamma$. We leave it as an exercise for the reader to verify that if $j \in \{1, \ldots, n\}$, $I \subset \{i \in \{1, \ldots, n\} : i < j\}$ and $(\{A_i : i \in I\}, A_j)$ is a rule of inference then so is $(\{B_i : i \in I\}, B_j)$; it will be necessary to use the hypothesis that c does not occur in A or in any A_1, \ldots, A_n . Thus $\Gamma \vdash A_{x \to y}$.

Appending $\forall y A_{x \to y}, (\forall y A_{x \to y} \to A), A, \forall x A \text{ to } B_1, \dots, B_n \text{ is a proof of } \forall x A \text{ using } \Gamma;$

Corollary 1.3. Suppose Γ is consistent, $A \in S$, $x \in X$, $\text{free}(A) = \{x\}$ and $\Gamma \vdash \sim \forall x A$. Suppose $c \in C$ and c does not occur in A or in any statement of Γ . Then $\Gamma \cup \{\sim A_{x \to c}\}$ is consistent.

Proof. Suppose, contrary to the Corollary, $\Gamma \cup \{\sim A_{x\to c}\}$ is not consistent. Then $\Gamma \cup \{\sim A_{x\to c}\} \vdash A_{x\to c}$. By the Deduction Theorem, $\Gamma \vdash (\sim A_{x\to c} \to A_{x\to c})$. This implies $\Gamma \vdash A_{x\to c}$. The Theorem on Constants now gives $\Gamma \vdash \forall x A$ which contradicts the consistency of Γ .

Theorem 1.3. (Lindenbaum-Henkin) Suppose Γ is consistent and c is a univalent sequence in C such that no member of the range of c occurs in any statement of Γ . Suppose also that C, X, F, R are countable. Then there is a set of formulas Δ such that $\Gamma \subset \Delta$ and Δ is consistent, complete and Henkin.

Proof. We let \mathcal{A} be the set of (Λ, A) such that $\Lambda \subset \mathcal{S}, A \in \mathcal{S}$,

$$\Lambda \vdash A \text{ and } A = \forall x B \text{ for no } (x, B) \in X \times S \text{ with } \mathbf{free}(B) = \{x\};$$

we let \mathcal{B} be the set of (Λ, A) such that $\Lambda \subset \mathcal{S}, A \in \mathcal{S}$,

$$A \vdash A \text{ and } A = \forall x B \text{ for some } (x, B) \in X \times S \text{ with } \mathbf{free}(B) = \{x\}\}$$

we let \mathcal{C} be the set of (Λ, A) such that

it is not the case that $\Lambda \vdash A$.

Note that the set of sentences is countably infinite. Let A be an enumeration of the set of sentences.

We construct a sequence Γ_n , $n \in \mathbb{N}$ in S and a sequence N in \mathbb{N} inductively as follows. We let $\Gamma_0 = \Gamma$ and we let $N_0 = 0$. For each $n \in \mathbb{N}$ we require that

$$N_{n+1} = \begin{cases} N_n & \text{if } (\Gamma_n, A_n) \in \mathcal{A}; \\ N_n + 1 & \text{if } (\Gamma_n \vdash A_n) \in \mathcal{B}; \\ N_n & \text{if } (\Gamma_n, A_n) \in \mathcal{C}. \end{cases}$$

and that

$$\Gamma_{n+1} = \begin{cases} \Gamma_n & \text{if } (\Gamma_n, A_n) \in \mathcal{A}; \\ \Gamma_n \cup \{\sim A_{x \to c_{N_n}}\} & \text{if } (\Gamma_n, A_n) \in \mathcal{B}; \\ \Gamma_n \cup \{\sim A_n\} & \text{if } (\Gamma_n, A_n) \in \mathcal{C}. \end{cases}$$

See page 196 for the remaining details of the proof.

For the remainder of this section let us suppose $C \subset C'$ and that \mathcal{F}' is the first order logic obtained from \mathcal{F} by replacing C with C'.

Theorem 1.4. (Extension by constants. p. 196) For each $A \in S$ we have

$$\Gamma \vdash_{\mathcal{F}} A \Leftrightarrow \Gamma \vdash_{\mathcal{F}'} A.$$

Moreover,

 Γ is consistent with respect to $\mathcal{F} \Leftrightarrow \Gamma$ is consistent with respect to \mathcal{F}' .

Proof. See page 196.

Theorem 1.5. Model existence theorem. Suppose Γ is consistent. Then Γ has a model.

Proof. See page 197.