1. Back to formal theories.

I’m going to modify some notions involving formal theories. Suppose

\[T = (L, A, R) \]

is a formal theory where \(L \) is a language on the alphabet \(A \) and \(R \) is the set of rules of inference.

Definition 1.1. Suppose \(\Gamma \subset L \).

We say the finite sequence

\[A_1, A_2, \ldots, A_n \]

is a **primary proof using** \(\Gamma \) if for each \(j \in \{1, \ldots, n\} \) either \(A_j \in \Gamma \) or there is a rule of inference \((H, C)\) such that \(H \subset \{A_i : i < j\} \) and \(C = A_j \). We say the statement \(A \) is a **theorem (of \(T \)) using** \(\Gamma \) if there is a primary proof \(A_1, \ldots, A_n \) using \(\Gamma \) such that \(A_n = A \) in which case we write

\[\Gamma \vdash A. \]

We say the finite sequence

\[A_1, A_2, \ldots, A_n \]

is a **proof using** \(\Gamma \) if for each \(j \in \{1, \ldots, n\} \) either \(A_j \in \Gamma \), or \(\Gamma \cup \{A_i : i < j\} \vdash A_j \) or there is a rule of inference \((H, C)\) such that \(H \subset \{A_i : i < j\} \) and \(C = A_j \).

Proposition 1.1. Suppose \(\Gamma \subset L \) and \(A \in L \) then \(\Gamma \vdash A \) if and only if there is a proof \(A_1, A_2, \ldots, A_n \) using \(\Gamma \) such that \(A_n = A \).

Proof. Just replace each \(A_j \) such that \(\Gamma \cup \{A_i : i < j\} \vdash A_j \) be a primary proof using \(\Gamma \cup \{A_i : i < j\} \) whose last statement is \(A_j \). \(\square \)

2. A very useful technique.

Let us fix a first order logic \(F \). Let \(S \) be the set of statements.

Definition 2.1. Suppose \(P \) is a set of propositional variables,

\[\sigma : P \to S \]

and \(A \in \mathbb{L}(P) \). Let

\[A_\sigma \]

be the the string obtained by replacing each occurrence of \(p \in P \) in \(A \) by \(\sigma(p) \).

Proposition 2.1. Suppose \(P \) is a set of propositional variables,

\[\sigma : P \to S \]

and \(A \in \mathbb{L}(P) \).

Then \(A_\sigma \in S \). Moreover, for any \(A, B \in \mathbb{P}(P) \) we have

\[(~ A)_\sigma = ~ (A_\sigma) \]

and

\[(A \circ B)_\sigma = (A_\sigma \circ B_\sigma) \quad \text{whenever } o \in \{\vee, \wedge, \rightarrow, \leftrightarrow\}. \]

Proof. Extend a parse tree for \(A \) by replacing the nodes corresponding to \(p \in P \) with a parse tree for \(\sigma(p) \). \(\square \)
Proposition 2.2. Suppose P, σ and Σ are as in the preceding Proposition, $\Gamma \subseteq p(P)$, $B \in p(P)$ and
$$\Gamma \vdash B.$$
Then
$$\{A_{\sigma} : A \in \Gamma\} \vdash B_{\sigma}.$$

Proof. One only has to check that if (H, C) is a rule of inference for propositional logic then
$$\{H_{\sigma} : H \in \mathcal{H}\} \vdash C_{\sigma};$$
this follows directly from the preceding Proposition. □

Theorem 2.1. Suppose P is a set of propositional variables,
$$\sigma, \tau : P \rightarrow S$$
and $A \in l(P)$. Then
$$\{(\sigma(p) \leftrightarrow \tau(p)) : p \in P\} \vdash A_{\sigma} \leftrightarrow B_{\tau}.$$

Proof. We have the following Lemma.

Lemma 2.1. Suppose $B, C, D, E \in S$. Then
$$\{(B_{\sigma} \leftrightarrow C_{\sigma})\} \vdash (\sim B)_{\sigma} \leftrightarrow (\sim C)_{\sigma}$$
and
$$\{(B_{\sigma} \leftrightarrow C_{\sigma}), (D_{\sigma} \leftrightarrow E_{\sigma})\} \vdash (B_{\sigma} \circ D_{\sigma}) \leftrightarrow (D_{\sigma} \circ E_{\sigma})$$
whenever $o \in \{\lor, \land, \rightarrow, \leftrightarrow\}$.

Proof. Combine the preceding Proposition with the following theorems from propositional logic:
$$\{(p \leftrightarrow q)\} \vdash (\sim p \leftrightarrow \sim q), \quad \{(p \leftrightarrow q), (r \leftrightarrow s)\} \vdash ((p \circ r) \leftrightarrow (q \circ s))$$
where $o \in \{\lor, \land, \rightarrow, \leftrightarrow\}$. □

To prove the Theorem we use induction on the the depth of a parse tree for A making use of the Lemma to carry out the inductive step. □