1. Disjunctive normal form.

Suppose \(P \) is a nonempty finite set of propositional variables. For each subset \(I \) of \(P \) let \(p_I = \left(\bigwedge_{p \in I} p \right) \land \left(\bigwedge_{p \in P \setminus I} \sim p \right) \).

Evidently,

\[
\text{t}_{p_I}(J) = \begin{cases} 1 & \text{if } J = I, \\ 0 & \text{if } J \neq I. \end{cases}
\]

If \(\mathcal{I} \) is a family of subsets of \(P \) we say the statement \(\bigvee_{I \in \mathcal{I}} p_I \) is in disjunctive normal form.

Proposition 1.1. Suppose \(T : 2^P \to \{0, 1\}, \quad \mathcal{I} = \{ I : I \subset P \text{ and } T(I) = 1 \} \) and \(B = \bigvee_{I \in \mathcal{I}} p_I. \)

Then \(\text{t}_B = T. \)

Proof. This follows immediately from (1). \(\square \)

Corollary 1.1. Suppose \(A \) is a statement and \(P \) is the set of its propositional variables. Let \(\mathcal{I} = \{ I : I \subset P \text{ and } \text{t}_A(I) = 1 \}. \)

Then \(A \leftrightarrow \bigvee_{I \in \mathcal{I}} p_I \) is a tautology.

Proof. Once you figure out what it says it’s obvious. \(\square \)

In logic jargon this Theorem says that any statement is tautologically equivalent to a statement in disjunctive normal form.