Expectation

Suppose \mathcal{E} is an experiment the set of possible outcomes of which is the sample space S. Let E be an event, which is to say that $E \subseteq S$. Let us recall the relative frequency interpretation of $P(E)$, the probability of E. Let

$$s_1, s_2, \ldots, s_n, \ldots$$

be the outcomes of a never ending sequence of independent repetitions of \mathcal{E}. Let $\nu(E, n)$, $n = 1, 2 \ldots$ be the number of occurrences of E in the first n repetitions of \mathcal{E}; that is, $\nu(E, n)$ is the number of $i \in \{1, \ldots, n\}$ such that $s_i \in E$. Then

$$P(E) = \lim_{n \to \infty} \frac{\nu(E, n)}{n}.$$

Now suppose X is a random variable on S with finite range x_1, \ldots, x_N. We define the expectation $E(X)$ of X to be

$$\lim_{n \to \infty} \frac{X(s_1) + X(s_2) + \cdots + X(s_n)}{n}$$

which is just the limit of the running average values of X on the sequence of outcomes $s_1, s_2, \ldots, s_n, \ldots$. I claim that

$$E(X) = \sum_{i=1}^{N} x_i P(X = x_i).$$

Indeed,

$$\frac{X(s_1) + X(s_2) + \cdots + X(s_n)}{n} = \frac{\sum_{i=1}^{N} x_i \nu(X = x_i, n)}{n} = \frac{\sum_{i=1}^{N} x_i \nu(X = x_i, n)}{n} \to \sum_{i=1}^{N} x_i P(X = x_i)$$

$n \to \infty$.

Now suppose X is a continuous random variable with range equal to (a, b). For each $N = 1, 2, \ldots$ define the discrete random variable X_N by requiring that

$$X_N = a + \frac{j}{N}(b - a)$$

if

$$a + \frac{j - 1}{N}(b - a) \leq X < a + \frac{j}{N}(b - a), \quad j = 1, \ldots, N.$$

Since $|X - X_N| \leq \frac{1}{N}$ for $N = 1, 2, \ldots$, X_N is a better and better approximation to X as $N \to \infty$. Now

$$E(X_N) = \sum_{j=1}^{N} (a + \frac{j}{N}(b - a)) P(\frac{j - 1}{N} \leq X < \frac{j}{N})$$

$$= \sum_{j=1}^{N} (a + \frac{j}{N}(b - a)) \int_{a + \frac{j - 1}{N}(b - a)}^{a + \frac{j}{N}(b - a)} f_X(x) \, dx$$

$$\to \int_{a}^{b} x f_X(x) \, dx$$

as $N \to \infty$. Thus it seems reasonable to define

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) \, dx$$
whenever X is a continuous random variable and to expect that the expectation operator will have all of the properties it has in the discrete case.

Some of these properties are:

- $E(c) = c$;
- $E(cX) = cE(X)$;
- $E(X + Y) = E(X) + E(Y)$;
- $E(\phi(X_1, \ldots, X_n)) = \sum_{x_1, \ldots, x_n} \phi(x_1, \ldots, x_n) p_{X_1, \ldots, X_n}(x_1, \ldots, x_n)$ if (X_1, \ldots, X_n) is discrete;
- $E(\phi(X_1, \ldots, X_n)) = \int \int \cdots \int \phi(x_1, \ldots, x_n) f_{X_1, \ldots, X_n}(x_1, \ldots, x_n) \, dx_1 \ldots dx_n$ if (X_1, \ldots, X_n) is continuous.