Time to blowup.

Suppose J is an open interval in \mathbb{R} and

$$f : J \to \mathbb{R}$$

is continuously differentiable and consider

(ODE) \[x'(t) = f(x(t)). \]

Suppose $x_0 \in \mathbb{R}$ and

(1) \[f(x) > 0 \quad \text{whenever } x \geq x_0. \]

Let $x : I \to \mathbb{R}$ be the maximal solution of (ODE) such that $x(0) = x_0$.

Proposition. We have

(2) \[x'(t) > 0 \quad \text{whenever } t \in I \text{ and } 0 \leq t. \]

Proof. Extra credit exercise. \square

Let

$$T = \sup I;$$

since $0 \in I$ by the definition of maximal solution we find that

$$0 < T \leq \infty.$$

It follows from (2) that

$$X = \lim_{t \uparrow T} x(t) \text{ exists.}$$

Proposition. We have

(3) \[T < \infty \Rightarrow X = \sup J. \]

Proof. Extra credit exercise. \square

I claim that

$$X = \sup B$$

and that

(4) \[T = \int_{x_0}^{\sup J} \frac{dx}{f(x)}. \]

We need a basic formula from calculus.

Proposition. Suppose $-\infty < c < d < \infty$;

$$g : [c, d] \to \mathbb{R};$$

g is continuous; $-\infty < a < b < \infty$;

$$\phi : [a, b] \to [c, d];$$

$$1$$
\(\phi \) is continuous; and \(\phi \) is continuously differentiable on \((c, d)\); and

\[\phi(a) = c \text{ and } \phi(b) = d. \]

Then

\[\int_c^d g(y) \, dy = \int_a^b g(\phi(x))\phi'(x) \, dx. \]

Proof. Let \(G : [c, d] \to \mathbb{R} \) be such that \(G \) is continuous on \([c, d]\) and \(G'(y) = g(y) \) whenever \(y \in (c, d) \). (For example, we could set

\[G(y) = \int_c^y g(\zeta) \, d\zeta, \quad y \in [c, d]. \]

Using the chain rule and the fundamental theorem of calculus we calculate

\[
\int_a^b g(\phi(x))\phi'(x) \, dx \\
= \int_a^b (G \circ \phi)'(x) \, dx \\
= G(\phi(a)) - G(\phi(b)) \\
= G(c) - G(d) \\
= \int_c^d g(y) \, dy.
\]

\(\square \)

Suppose \(0 < t < T \). Using the preceding Proposition with \(a, b, c, d, \phi \) there equal \(0, t, x_0, x(t), x \) we calculate

\[
t = \int_0^t 1 \, d\tau \\
(5) \\
= \int_0^t \frac{1}{f(x(\tau))} x'(\tau) \, d\tau \\
= \int_{x_0}^{x(t)} \frac{d\xi}{f(\xi)}
\]

Letting \(t \uparrow T \) in (4) we obtain

\[
(6) \\
T = \int_0^X \frac{d\xi}{f(\xi)}.
\]

Were it the case that \(X < \sup J \) we could infer from (6) that \(T < \infty \) and that would contradict (3).