Hilbert’s axioms for (two dimensional) neutral geometry.

We spell these out below. It will take a while. There will be several groups of axioms: the incidence axioms; the betweenness axioms; the continuity axiom; and the congruence axioms.

The Incidence Axioms. There are a set whose members we call points and a family of sets of points whose members we call lines such that

(I1) if a and b are distinct points there is one and only one line $l(a, b)$, the line determined by a and b, such that \{a, b\} \subseteq $l(a, b)$;

(I2) any line contains at least two points.

If p is a point and L is a line we say p lies on L if $p \in L$.

Theorem. If L and M are lines and L intersects M then either $L = M$ or $L \cap M$ contains exactly one point.

Proof. This follows directly from (I1). □

If L and M are lines and L does not intersect M we say L and M are parallel.

Definition. Suppose S is a set of points. We say S is collinear if S is a subset of some line. We say S is noncollinear if S is not collinear.

Note that a subset of a collinear set is collinear and that a superset of a noncollinear set is noncollinear.

(I3) There is a noncollinear set of points.

An obvious consequence of (I3) is the following.

Theorem. Suppose L is a line. Then there is a point which does not lie on L.
