Betweenness preserving permutations.

We let

\[\tau \]

be the identity map of the set of points.

Definition. We say a permutation \(\tau \) of the set of points is betweenness preserving if

\[\tau|_{s(a,b)} = s(\tau(a), \tau(b)) \]

whenever \(a \) and \(b \) are distinct points.

We let

\[\mathcal{B} \]

be the set of betweenness preserving permutations of the set of points.

Theorem. \(\mathcal{B} \) is a subgroup of the group of permutations of the set of points.

Proof. Exercise. \(\square \)

Remark. We will use repeatedly the fact that if \(\tau \in \mathcal{B} \) and \(X \) is a set of points then

\[\tau^{-1} [\tau[X]] = (\tau^{-1} \circ \tau)[X] = \iota[X] = X. \]

Proposition. Suppose \(A \) is a set of points and \(\tau \in \mathcal{B} \). Then

\[\tau|_{\mathcal{b}(A)} = \mathcal{b}(\tau[A]). \]

Proof. Suppose \(y \in \tau|_{\mathcal{b}(A)} \). Then there is \(x \) in \(\mathcal{b}(A) \) such that \(y = \tau(x) \). Since \(x \in \mathcal{b}(A) \) there is \(a \) in \(A \) such that \(s(a, x) \subseteq A \). Let \(b = \tau(a) \) and note that \(b \in \tau[A] \). Since \(\tau \in \mathcal{B} \) we have \(\tau[s(a, x)] = s(\tau(a), \tau(x)) = s(b, y) \).

Were it the case that \(y \in \tau[A] \) we would have \(x = \tau^{-1}(y) \in \tau^{-1}[\tau[A]] = A \) which is impossible since \(x \in \mathcal{b}(A) \) implies \(x \not\in A \). Thus \(y \in \mathcal{b}(\tau[A]) \).

Suppose \(y \in \mathcal{b}(\tau[A]) \). Then \(y \notin \tau[A] \) and there is \(b \) in \(\tau[A] \) such that \(s(b, y) \subseteq \tau[A] \). Let \(x = \tau^{-1}(y) \) and let \(a = \tau^{-1}(b) \). Were it the case that \(x \in A \) we would have \(y = \tau(x) \in \tau[A] \) which is impossible. Moreover, \(a = \tau^{-1}(b) \in \tau^{-1}[\tau[A]] = A \). Since \(\tau^{-1} \in \mathcal{B} \) we have \(s(a, x) = s(\tau^{-1}(b), \tau^{-1}(y)) = \tau^{-1}[s(b, y)] \subseteq \tau^{-1}[\tau[A]] = A \). Thus \(x \in \mathcal{b}(A) \) so \(y = \tau(x) \in \mathcal{b}(\tau[A]) \). \(\square \)

Theorem. Suppose \(\tau \) is a betweenness preserving permutation of the set of points. The following statements hold:

(i) If \(a \) and \(b \) are distinct points then \(\tau|_{\mathcal{I}(a,b)} = \mathcal{I}(\tau(a), \tau(b)) \); in particular, if \(L \) is a line then \(\tau[L] \) is a line.

(ii) If \(o \) and \(a \) are distinct points then \(\tau|_{\mathcal{r}(o,a)} = \mathcal{r}(\tau(o), \tau(a)) \). In particular, if \(R \) is a ray then \(\tau[R] \) is a ray and \(\tau(\mathcal{o}(R)) = \mathcal{o}(\tau[R]) \).

(iii) If \(L \) is a line and \(a \) is a point not on \(L \). Then \(\tau(a) \) is not on \(\tau[L] \) and \(\tau|_{\mathcal{h}(L,a)} = \mathcal{h}(\tau[L], \tau(a)) \). In particular, if \(H \) is a half space then \(\tau[H] \) is a half space and \(\tau|_{\mathcal{b}(H)} = \mathcal{b}(\tau[H]) \).

(iv) If \(< \) is an geometric linear ordering of the line \(L \) then

\[\{ (\tau(a), \tau(b)) : a, b \in L \text{ and } a < b \} \]

is a geometric ordering of the line \(\tau[L] \).

(v) If \(F \) is an fundamental set then \(\tau[F] \) is an fundamental set; if \(S \) is a side of \(F \) then \(\tau[S] \) is a side of \(\tau[F] \); if \(v \) is a vertex of \(F \) then \(\tau(v) \) is a vertex of \(\tau[F] \).
Proof. Exercise. □

Definition. Suppose $\tau \in B$, L is a line and $\tau[L] = L$. As a consequence of (iv) in the preceding Theorem we see that either

$$\tau(a) < \tau(b) \iff a < b$$

whenever $<$ is a geometric linear ordering of L and $a, b \in L$ in which case we say τ is order preserving on L or

$$\tau(b) < \tau(a) \iff a < b$$

whenever $<$ is a geometric linear ordering of L and $a, b \in L$ in which case we say τ is order reversing on L.

Here are three very important consequences of the Continuity Axiom.

Theorem. Suppose

(i) $\tau \in B$, L is a line, $\tau[L] = L$ and τ is order preserving on L;

(ii) $\tau(a) \neq a$ for each $a \in L$; and

(iii) $o \in L$ and $<$ is the geometric linear ordering of L such that $o < \tau(o)$.

Then for each $a \in L$ there is a unique integer n such that

$$\tau^n(o) \leq a < \tau^{n+1}(o).$$

Moreover,

$$a < \tau(a) \quad \text{for} \quad a \in L.$$

Proof. Let $R = \{x \in L : o < x\}$. Let $A = \{\tau^n(o) : n \in \mathbb{N}\}$. Since τ preserves $<$ we find that $A \subset R$.

Suppose $a \in R$. By an earlier Theorem, a is not an upper bound for A so there is a least nonnegative integer n such that $a < \tau^{n+1}(o)$. It follows that $\tau^n(o) \leq a$. Thus $\tau^n(o) \leq a < \tau^{n+1}(o)$. The uniqueness of n follows directly from the fact that τ preserved $<$ as does the fact that $\tau^{n+1}(o) \leq \tau(a)$ so $a < \tau(a)$.

In case $a = o$ the assertion to be proved is trivial.

In case $a \in R^2$ we apply the results of the first paragraph with τ replaced by τ^{-1}. □

Theorem. Suppose $\tau \in B$, L is a line, $\tau[L] = L$ and τ is order reversing on L.

Then there is a point o in L such that $\tau(o) = o$.

Proof. This follows directly from earlier theory. □

Theorem. Suppose (H, R) is a flag, o is the origin of R, $\tau \in B$, $\tau(o) = o$,

$$R \subset \tau[H] \quad \text{and} \quad \tau[R] \subset H.$$

Then there is S such that $S \in R(o)$, $S \subset a(R, \tau[R])$ and

$$\tau[S] = S.$$

Proof. Let $<$ be the geometric linear ordering on $A(H, R)$ and recall that, by a previous Theorem, $<$ is complete. We have $\tau^2[R] \subset \tau[R]$ so $\tau^2[H] \in A(H, R)$. Thus either $\tau^2[R] \subset a(\tau[R], R)$ or $R \subset a(\tau[R], \tau^2[R])$.

Suppose $(\tau^2[R] \subset a(\tau[R], R)$ holds. Let $T = \{S \in A(H, R) : S \prec R\}$. We have

$$S \in T \Rightarrow S \subset a(\tau[R], R) \Rightarrow \tau[S] \in a(\tau[R], \tau^2[R]) \Rightarrow \tau[S] \prec \tau^2[R] \Rightarrow \tau[S] < R \Rightarrow \tau[S] \in T.$$

Moreover, by an earlier Theorem,

$$S, T \in T \text{ and } S < T \Rightarrow S \subset a(\tau[R], T) \Rightarrow T \in a(R, S) \Rightarrow \tau[T] \subset a(\tau[R], \tau[S]) \Rightarrow \tau[T] < \tau[S].$$
Thus

\[\{(S, \tau[S]) : S \in T \} \]

is order reversing function from \(T \) to itself. By earlier theory, there is a member \(S \) of \(T \) such that \(\tau[S] = S \).

Suppose \(R \subset a(\tau[R], \tau^2[R]) \) holds. Let \(U = \tau[R] \) and let \(I = \tau[H] \) and let \(\sigma = \tau^{-1} \). Then

\[U \subset \sigma[I], \quad \sigma[U] \subset I, \quad \sigma^2[U] \subset a(\sigma[U], U) \]

so we may apply the result just obtained with \(\tau, R, H \) replaced by \(\sigma, U, I \) to secure \(S \in R(o) \) such that \(\sigma[S] = S \) and \(S \subset a(R, \tau[R]) \).

Orientation.

Let \(o \) be a point.

Definition. We let \(F(o) = \{(H, R) : (H, R) \text{ is a flag and } o = o(R)\} \).

Definition. Let

\[K = \{(1,1), (1,-1), (-1,1), (-1,-1)\} \]

and let \(K^+ = \{(1,1), (-1,-1)\} \).

Note that

\[(ac, bd) \in K \quad \text{whenever } (a, b), (c, d) \in K. \]

For each flag \(F = (H, R) \) and each \((a, b) \in K \) we let

\[F^{(a,b)} = \begin{cases} (H, R) & \text{if } (a, b) = (1,1); \\ (H, R^o) & \text{if } (a, b) = (1,-1); \\ (H^o, R) & \text{if } (a, b) = (-1,1); \\ (H^o, R^o) & \text{if } (a, b) = (-1,-1). \end{cases} \]

Note that

\[F^{(a,b)}(c,d) = F^{(ac,bd)} \quad \text{whenever } (a, b), (c, d) \in K. \]

Definition. \(G = (I, S) \in F(o) \). We let

\[p(G) = \{(H, R) \in F(o) : S \subset H \text{ and } R \subset I^o\}. \]

For each \((a, b) \in K \) we let

\[P^{(a,b)}(G) = \{ F \in F(o) : F^{(a,b)} \in p(G) \}. \]

Proposition. Suppose \(F, G \in F(o) \) and \((a, b) \in K^+ \). Then

\[F \in n(G) \iff F^{(a,b)} \in n(G^{(a,b)}). \]

Proof. The point here is that if \(S \in R(o) \) and \(H \) is a halfplane containing \(o \) then \(S \subset H \) if and only if \(S^o \subset H^o \).

Proposition. Suppose \(G \in F(o) \). Then

\[\{ \{ G^{(a,b)} : (a, b) \in K \} \cup \{ p^{(a,b)} : (a, b) \in K \} \]
has eight members and is a partition of $F(o)$.

Theorem. Suppose L_1, L_2, L_3 are three distinct lines; $H_i \in H(L_i)$, $i = 1, 2, 3$; $L_1 \cap L_2 \cap L_3 \neq \emptyset$;

\[L_1 \cap H_2 \cap H_3 \neq \emptyset \quad \text{and} \quad L_2 \cap H_2 \cap H_3^{\circ} \neq \emptyset. \]

Then \[L_3 \cap H_1 \cap H_2 \neq \emptyset. \]

Proof. Let $a_1 \in L_1 \cap H_2 \cap H_3$ and let $a_2 \in L_2 \cap H_2 \cap H_3^{\circ}$. Then $s(a_1, a_2)$ is a subset of $H_1 \cap H_2$ and meets L_3 in a point a_3. Since $s(a_1, a_3) \subset s(a_1, a_2) \subset H_1$ we infer that $a_3 \in H_1$. Since $s(a_2, a_3) \subset s(a_1, a_2) \subset H_2$ we infer that $a_3 \in H_2$. \[\square \]

Definition. For each $G \in F(o)$ we let

\[o^+(G) = \{G(1,1)\} \cup \{G(-1,-1)\} \cup p^{(1,1)} \cup p^{(-1,-1)} \]

and we let

\[o^{-}(G) = \{G(1,-1)\} \cup \{G(-1,1)\} \cup p^{(1,-1)} \cup p^{(-1,1)} \]

If $F, G \in F(o)$ we write

\[F \sim_o G \]

and say F has the **same orientation** as G if $F \in o^+(G)$ and we write

\[F \not\sim_o G \]

and say F has the **opposite orientation** to G if $F \in o^-(G)$.

Theorem. Suppose $F, G \in F(o)$. Then

\[F \sim_o G \iff F^o \sim_o G^o. \]

Proof. Simple exercise for the reader. \[\square \]

Theorem. Then \sim_o is an equivalence relation on $F(o)$, corresponding to which there are exactly two equivalence classes.

Furthermore, if $G \in F(o)$ then $o^+(G)$ and $o^-(G)$ are the equivalence classes for \sim_o.

Proof. Suppose (H_i, R_i), $i = 1, 2, 3$, are flags. We need to show that

1. \[(H_1, R_1) \sim_o (H_1, R_1); \]
2. \[(H_2, R_2) \sim_o (H_1, R_1) \Rightarrow (H_2, R_2) \sim_o (H_1, R_1); \]
3. \[(H_2, R_2) \sim_o (H_1, R_1) \text{ and } (H_3, R_3) \sim_o (H_2, R_2) \Rightarrow (H_3, R_3) \sim_o (H_1, R_1). \]

That (1) and (2) hold is obvious.

Let us prove (3). Suppose $(H_1, R_1) \in o^+((H_2, R_2))$ and $(H_2, R_2) \in o^+((H_3, R_3))$ but $(H_1, R_1) \in o^{-}((H_3, R_3))$. Then \[R_1 \subset H_2 \cap H_3; \quad R_2 \subset H_1^o \cap H_3; \quad R_3 \subset H_2^o \cap H_1. \]

Then \[L_1 \cap H_3 \cap H_1 \neq \emptyset \quad \text{and} \quad L_3 \cap H_1 \cap H_2^o \neq \emptyset \] so the Lemma gives \[L_2 \cap H_3 \cap H_1 \neq \emptyset \] which is incompatible with \[R_2 \subset H_1^o \cap H_3. \]

Definition. Suppose $\tau \in B(o)$. We say a τ is **orientation preserving** if $(\tau[H], \tau[R]) \sim_o (H, R)$ for any $(H, R) \in F(o)$. We say a τ is **orientation reversing** if $(\tau[H], \tau[R]) \not\sim_o (H, R)$ for any $(H, R) \in F(o)$.

Theorem. Any member of $B(o)$ is either orientation preserving or orientation reversing. Furthermore, if $\sigma, \tau \in B(o)$ then $\tau \circ \sigma$ is orientation preserving if and only if σ and τ are both orientation preserving or orientation reversing.

4