Matrices, vectors and covectors.

Let F be a field (e.g. the rational numbers \mathbb{Q}, the real numbers \mathbb{R} or the complex numbers \mathbb{C}). In linear algebra the members of F are called scalars.

Definition. Let m, n be positive integers and We let $F_{m \times n}$ be the set of rectangular arrays

$$A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix},$$

where a_{ij}, which is found in the i-th row and j-th column, is in the field F. We call such an array an m by n matrix (with entries in F); the ordered pair (i, j) is the shape of the matrix.

More precisely, an m by n matrix is a function whose domain is the Cartesian product $\{1, \ldots, m\} \times \{1, \ldots, n\}$ and whose range is a subset of F.

Using a_{ij} to denote the entry of A in the i-th row and j-th column, while quite common, is highly ambiguous; for example, if $m = n = 234$ then a_{1234} has three different interpretations; it could be the entry in the first row and 234-th column; or the entry in the 12-th row and 34-th column; or the entry in the 123-rd row and 4-th column. In addition there is no logical relationship between A' and a'. A technically better notation, which we will use when appropriate, is to let A_{ij} be the element in the i-th row and j-th column whenever $A \in F_{m \times n}$.

Oftentimes we will not distinguish between a scalar $c \in F$ and the member $[c]$ of F_1.

The zero matrix. Whenever m and n are positive integers we let

$$O$$

be the m by n matrix such that

$$O_{ij} = 0, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n.$$

We call O the zero matrix.

Scalar multiplication. Whenever m and n are positive integers, $c \in F$ and $A \in F_{m \times n}$ we let

$$cA \in F_{m \times n}$$

be such that

$$(cA)_{ij} = cA_{ij}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n.$$

We call cA scalar multiplication (of the matrix A by the scalar c).

Matrix addition. Whenever m and n are positive integers and $A, B \in F_{m \times n}$ we let

$$A + B \in F_{m \times n}$$
be such that
\[(A + B)_{ij} = A_{ij} + B_{ij}\] whenever \(i = 1, \ldots, m\) and \(j = 1, \ldots, n\).

We call \(A + B\) the \textbf{(matrix) sum of} \(A\) and \(B\).

The negative of a matrix. Whenever \(m\) and \(n\) are positive integers and \(A, B \in \mathbb{F}^{m \times n}\) we let

\[-A \in \mathbb{F}^{m \times n}\]

be such that
\[(-A)_{ij} = -(A_{ij}), \quad i = 1, \ldots, m, \quad j = 1, \ldots, n.\]

We let
\[A - B = A + (-B).\]

Some properties of scalar multiplication and matrix addition. We leave it to the reader to provide all the hypotheses. We have

(i) \((A + B) + C = A + (B + C)\);
(ii) \(A + O = A = O + A\);
(iii) \(A + (-A) = O = (-A) + A\);
(iv) \(A + B = B + A\);
(v) \(c(A + B) = cA + cB\);
(vi) \((c + d)A = cA + dA\);
(vii) \((cd)A = c(dA)\);
(viii) \(1A = A\);

Diagonal matrices. Let \(n\) be a positive integer. Whenever \(c_1, c_2, \ldots, c_n\)
is an array of \(n\) scalars we let

\[
\text{diag}(c_1, c_2, \ldots, c_n) = \begin{bmatrix}
 c_1 & 0 & \cdots & 0 \\
 0 & c_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & c_n
\end{bmatrix} \in \mathbb{F}^{n \times n}.
\]

We note that
\[O = \text{diag}(0, 0, \ldots, 0).\]

Identity matrices. We let
\[I = \text{diag}(1, 1, \ldots, 1)\]
and call \(I\) the \textbf{n by n identity matrix}. We will follow the custom of letting
\[
\delta^i_j = I^i_j = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{else}
\end{cases}, \quad i = 1, \ldots, n, \quad j = 1, \ldots, n.
\]
Matrix multiplication. Whenever l, m and n are positive integers, $A \in \mathbb{F}^l_m$ and $B \in \mathbb{F}^m_n$ we let

$$AB \in \mathbb{F}^l_n$$

be such that

$$(AB)_j^i = \sum_{k=1}^{m} A^i_k B^k_j$$

whenever $i = 1, \ldots, l$, $j = 1, \ldots, n$.

We call AB the (matrix) product of A and B.

Example. Let

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{and let} \quad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}. $$

So $A, B \in \mathbb{Q}_2^2$. We have

$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad BA = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

so

$$AB \neq BA.$$

In fact, in a sense that can be made precise, $AB \neq BA$ for almost all A, B.

Properties of matrix multiplication. We leave it to the reader to supply all the hypotheses. We have

(i) $A(B + C) = AB + AC$;

(ii) $(A + B)C = AC + BC$;

(iii) $AI = A = IA$;

(iv) $c(AB) = (cA)B = A(cB)$;

(v) $A(BC) = (AB)C$.

Proof. These are all rather obvious except, perhaps, (v). To prove it we suppose l, m, n, p are positive integers, $A \in \mathbb{F}^l_m$, $B \in \mathbb{F}^m_n$, $C \in \mathbb{F}^n_o$ and, with $1 \leq i \leq l$ and $1 \leq j \leq o$, we calculate

$$(A(BC))_j^i = \sum_{k=1}^{m} A^i_k (BC)_j^k = \sum_{k=1}^{m} A^i_k \left(\sum_{l=1}^{n} B^k_l C^l_j \right)$$

as well as

$$((AB)C)_j^i = \sum_{l=1}^{n} (AB)_j^l C^l_j = \sum_{l=1}^{n} \left(\sum_{k=1}^{m} A^l_k B^k_l \right) C^l_j;$$

and note that, by laws of arithmetic (which ones?) the rightmost terms are equal. \(\square \)

The transpose of a matrix. Whenever m and n are positive integers and $A \in \mathbb{F}^m_n$ we let

$$A^t \in \mathbb{F}^n_m$$

be such that

$$(A^t)_j^i = A^i_j$$

whenever $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

We call A^t the (matrix) transpose of A.

Properties of the transpose. We leave it to the reader to supply all the hypotheses. We have
(i) \((A + B)^t = A^t + B^t\);
(ii) \((cA)^t = cA^t\);
(iii) \((A^t)^t = A\);
(iv) \(O^t = O\);
(v) \(I^t = I\);
(vi) \((AB)^t = B^tA^t\).

These are all obvious except perhaps for (vi). Suppose \(l, m, n\) are positive integers, \(A \in \mathbf{F}^l_m\) and \(B \in \mathbf{F}^m_n\). Then if \(1 \leq i \leq l\) and \(1 \leq j \leq n\)
\[((AB)^t)_i^j = (AB)_j^i = \sum_{k=1}^{m} A_k^i B_j^k \]
and
\[(B^tA^t)_i^j = \sum_{k=1}^{m} (B^t)_k^i (A^t)_i^k = \sum_{k=1}^{m} B_j^k A_i^k. \]

Vectors. Suppose \(n\) is a positive integer. We let
\[\mathbf{F}^n = \mathbf{F}^n_1. \]
The members of \(\mathbf{F}^n\) are called \(n\)-vectors or \((n-)\)column vectors. Whenever \(X \in \mathbf{F}^n\) and \(j = 1, \ldots, n\) we let
\[X^j = X^j_1 \in \mathbf{F}. \]
For each \(j = 1, \ldots, n\) we let
\[E_j \]
be that member of \(\mathbf{F}^n\) such that
\[(E_j)_1^i = \delta_j^i, \quad i = 1, \ldots, n; \]
it is called the \(j\)-th standard basis vector in \(\mathbf{F}^n\).

Covectors. We let
\[\mathbf{F}_n = \mathbf{F}^1_n. \]
The members of \(\mathbf{F}_n\) are called \(n\)-covectors or \((n-)\)row vectors. Whenever \(Y \in \mathbf{F}_n\) and \(i = 1, \ldots, n\) we let
\[Y_i = Y_i^1 \in \mathbf{F}. \]
For each \(i = 1, \ldots, n\) we let
\[E^i \]
be that member of \(\mathbf{F}_n\) such that
\[(E^i)_j^1 = \delta_j^i, \quad j = 1, \ldots, n; \]
it is called the \(j\)-standard basis covector in \(\mathbf{F}_n\).

Definition. Suppose \(m\) and \(n\) are positive integers. Whenever \(i = 1, \ldots, m\) and \(j = 1, \ldots, n\) we let
\[E_j^i = E_j E^i \]
where \(E_j\) is the \(j\)-th standard basis vector in \(\mathbf{F}^m\) and \(E_i\) the \(i\)-th standard basis covector in \(\mathbf{F}_n\); thus
\[(E_j^i)_l^k = \delta_l^j \delta_j^k, \quad k = 1, \ldots, m, \quad l = 1, \ldots, n. \]
Thus E^i_j has 1 in its j-th row and i-th column which might not be what you expected; get used to this.

Note that $E^i_j E_j = [\delta^i_j]$.

Proposition. Suppose m and n are positive integers and $A \in \mathbb{F}_n^m$. Then

$$A = \sum_{i=1}^m \sum_{j=1}^n A^i_j E^j_i.$$

Proof. Whenever $k = 1, \ldots, m$ and $l = 1, \ldots, n$ we have

$$\left(\sum_{i=1}^m \sum_{j=1}^n A^i_j E^j_i \right)_k^l = \sum_{i=1}^m \sum_{j=1}^n A^i_j (E^j_i)_k^l = \sum_{i=1}^m \sum_{j=1}^n A^i_j \delta^i_j \delta^l_k = \delta^l_k.$$

Make sure you understand each step! \(\Box\)

Definition. Suppose m and n are integers and $A \in \mathbb{F}_n^m$. For each $i = 1, \ldots, m$ we let

$$A^i = [A^i_1, A^i_2, \ldots, A^i_n] \in \mathbb{F}_n;$$

thus A^i is the i-th row of A.

For each $j = 1, \ldots, n$ we let

$$A_j = \begin{bmatrix} A^1_j \\ A^2_j \\ \vdots \\ A^n_j \end{bmatrix} \in \mathbb{F}^m;$$

thus A_j is the j-th column of A.

Proposition. Suppose m and n are positive integers and $A \in \mathbb{F}_n^m$. Then

$$A^i = E^i A = \sum_{k=1}^m A^i_k E^k, \quad A_j = AE_j = \sum_{l=1}^n A^j_l E_l \quad \text{and} \quad A^i_j = E^i (AE_j) = (E_i A) E_j$$

whenever E^i is the i-th standard basis covector in \mathbb{F}_m and E^j is the j-th standard basis covector in \mathbb{F}^n.

Proof. Suppose $1 \leq i \leq m$ and $1 \leq j \leq n$. Whenever $l = 1, \ldots, n$ we have

$$(AE_j)_l^k = \sum_{l=1}^m A^i_l (E^j)_l^k = \sum_{l=1}^m A^i_l \delta^i_k = A^k_j = (A_j)^k.$$
Corollary. Suppose \(n \) is a positive integer. Then

\[
X = \sum_{j=1}^{n} X^j E_j \quad \text{whenever} \quad X \in \mathbb{F}^n \quad \text{and} \quad j = 1, \ldots, n
\]

and

\[
Y = \sum_{i=1}^{m} Y^i E^i \quad \text{whenever} \quad Y \in \mathbb{F}^n \quad \text{and} \quad i = 1, \ldots, m.
\]

Proof. Apply the preceding Proposition with \(m = n \) and \(n = 1 \) and with \(m = n \) and \(n = 1 \), respectively. \(\square \)

Corollary. Suppose \(l, m, n \) are positive integers, \(A \in \mathbb{F}^l_m \) and \(B \in \mathbb{F}^m_n \). Then

\[
(AB)^j = AB_j, \quad j = 1, \ldots, n
\]

and

\[
(AB)^i = A^i B, \quad i = 1, \ldots, l.
\]

Proof.