This test consists of five questions, worth a total of 70 points. **Show all your work.**

Perform elementary row operations by hand. Indicate each operation by mathematical notation \((R_i \leftrightarrow R_j, kR_i, R_i + kR_j) \) Unsupported answers may receive no credit.

I. Let

\[
A = \begin{bmatrix}
1 & -1 & -1 & 2 \\
2 & -1 & 1 & 3 \\
-3 & 1 & -3 & -4
\end{bmatrix}
\quad \text{and} \quad
\vec{b} = \begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}
\]

1. (10 points) Determine the conditions under which the system of equations \(Ax = \vec{b} \) is consistent.

2. (6 points) If the conditions in part 1 are satisfied, find the general solution (i.e. the set of all the solutions) of the system \(Ax = \vec{b} \).

3. (3 points) Express your answer in part 2 in the form of a linear combination of vectors.

4. (5 points) Let \(\vec{v}_i \) be the ith column of matrix \(A \) where \(i = 1, 2, 3 \). Are \(\vec{v}_1, \vec{v}_2 \) and \(\vec{v}_3 \) linearly independent? Justify your answer briefly.
Solution of I continues...
II. Let

\[A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \]

1. (10 points) Find \(A^{-1} \) and solve the system of equations \(A\vec{x} = \vec{b} \).
2. (5 points) Find the adjoint of \(A \), \(\text{adj}(A) \).
3. (5 points) Let \(\vec{v}_i \) be the ith column of matrix \(A \) where \(i = 1, 2, 3 \). Are \(\vec{v}_1, \vec{v}_2 \) and \(\vec{v}_3 \) linearly independent? Justify your answer briefly.
III. (14 points) Let \(A = [A_1, A_2, A_3, A_4] \) be a 4 \(\times \) 4 matrix and \(\det(A) = 10 \). Compute each of the following:

1. \(\det(B) \) where \(B = [5A_1, 5A_2, 5A_3, 5A_4] \);
2. \(\det(C) \) where \(C = [A_1 + 5A_4, A_3, A_2, 8(A_1 + 5A_4)] \);
3. \(\det(D) \) where \(D = [A_1 + 5A_4, A_3, A_2, A_4] \);
4. \(\det(E) \) where \(E = [A_1 + 5A_4, -2A_3, A_2, 7A_3 + A_4] \).
5. \(x_3 \), the (3, 1) entry of \(\vec{x} \) which is the solution of the system of equations \(A\vec{x} = \vec{b} \) where \(\vec{b} = A_3 - 6A_1 \).
IV. (6 points) Let \(A = I - a v v^T \), where \(v \) is a nonzero \(n \times 1 \) vector in \(\mathbb{R}^n \), \(a \) is a nonzero number and \(I \) is the \(n \times n \) identity matrix. Let \(a = \frac{2}{(v^T v)} \). Compute \((I - a v v^T)^2\) and simplify your answer.

V. (6 points) True-False. Write T or F in the blank to the left of each statement.

1. An \(m \times n \) system of linear equations always has a unique solution if \(m = n \).

T

2. An \(m \times n \) system of linear equations is always inconsistent if \(m > n \).

F

3. \(\det(A + B) = \det(A) + \det(B) \) where \(A \) and \(B \) are two \(n \times n \) matrices.

T

4. \((A + B)^{-1} = A^{-1} + B^{-1} \) where \(A \) and \(B \) are two \(n \times n \) invertible matrices.

F

5. \((A + B)^T = A^T + B^T \) where \(A \) and \(B \) are two \(m \times n \) matrices.

T

6. Let \(a, b, \cdots, j \) be ten arbitrary numbers. \(A^3 = O \) if

\[
A = \begin{bmatrix}
0 & 0 & a & b & c & d \\
0 & 0 & 0 & e & f & g \\
0 & 0 & 0 & h & i \\
0 & 0 & 0 & 0 & j \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]