I have neither given nor received aid in the completion of this test.
Signature:

TO GET FULL CREDIT YOU MUST SHOW ALL WORK!

<table>
<thead>
<tr>
<th></th>
<th>Your Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 pts.</td>
</tr>
<tr>
<td>2</td>
<td>20 pts.</td>
</tr>
<tr>
<td>3</td>
<td>5 pts.</td>
</tr>
<tr>
<td>4</td>
<td>5 pts.</td>
</tr>
<tr>
<td>5</td>
<td>10 pts.</td>
</tr>
<tr>
<td>6</td>
<td>15 pts.</td>
</tr>
<tr>
<td>7</td>
<td>10 pts.</td>
</tr>
<tr>
<td>8</td>
<td>5 pts.</td>
</tr>
<tr>
<td>9</td>
<td>5 pts.</td>
</tr>
<tr>
<td>10</td>
<td>10 pts.</td>
</tr>
<tr>
<td>11</td>
<td>15 pts.</td>
</tr>
<tr>
<td></td>
<td>Total 105 pts.</td>
</tr>
</tbody>
</table>

The average on this 50 minute test was 54.16 and the standard deviation was 17.25.

1. 5 pts. Let P be the plane consisting of those (x, y, z) such that $x + y + z = 1$. Exhibit parametric equations for the line passing through $(1, 2, 3)$ which meets P in a right angle.

Solution. Let $\mathbf{n} = (1, 1, 1)$; then \mathbf{n} is normal to P so
$$\mathbf{r}(t) = (1, 2, 3) + t(1, 1, 1), \quad t \in \mathbb{R},$$
parameterizes the line.

2. (a) 5 pts. Show that the points $(1, 1, 0), (1, 0, 0), (0, 1, 1)$ do not lie on a line.

Solution. Let $\mathbf{v} = (1, 0, 0) - (1, 1, 0) = (0, -1, 0)$ and let $\mathbf{w} = (0, 1, 1) - (1, 1, 0) = (-1, 0, 1)$. Then
$$\mathbf{v} \times \mathbf{w} = \begin{bmatrix} i & j & k \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = -i - k = (-1, 0, -1).$$
Since $v \times w \neq 0$ the points do not lie on a line.

(b) 5 pts. Let P be the plane containing the points in part (a). Exhibit scalars a, b, c, d such the point (x, y, z) is in P if and only if

$$ax + by + cz = d.$$

Solution. $n = v \times w$ is normal to P and $(1, 1, 0)$ lies in P. So

$$-x - z = (x, y, z) \cdot (-1, 0, -1) = (1, 1, 0) \cdot (-1, 0, -1) = -1$$

is an equation for P so we may take $a = -1, b = 0, c = -1, d = -1$.

(c) 10 pts. Let $q = (1, 2, 3)$. Show that q does not lie on P and determine the point p in P which is closest to q.

Solution. $-1 = q \cdot n = (1, 2, 3) \cdot (-1, 0, -1) = -1$ so q does not lie in P. Moreover,

$$r(t) = q + t n = (1, 2, 3) + t(-1, 0, -1), \quad t \in \mathbb{R}$$

parameterizes the line passing through q perpendicular to P so $p = r(t)$ if

$$-1 = r(t) \cdot n = ((1, 2, 3) + t(-1, 0, -1)) \cdot (-1, 0, -1) = -4 + 2t$$

so $t = 3/2$ and

$$p = r \left(\frac{3}{2} \right) = (1, 2, 3) + \frac{3}{2}(-1, 0, -1) = \frac{1}{2} (-1, 4, 3).$$

3. 5 pts. Suppose for P_i is the plane with equation

$$a_ix + b_iy + c_iz = d_i$$

for each $i = 1, 2$. How do you tell if P_1 is parallel to P_2?

Solution. Let $n_i = (a_i, b_i, c_i)$ for $i = 1, 2$. Then n_i is normal to P_i, $i = 1, 2$, so $P_1 \parallel P_2$ if and only if $n_1 \times n_2 = 0$.

4. 5 pts. Compute $\text{comp}_{(3,0,4)}(1,2,3)$.

Solution. We have

$$\text{comp}_{(3,0,4)}(1,2,3) = \frac{(1,2,3) \cdot (3,0,4)}{|(3,0,4)|} = \frac{1 \cdot 3 + 2 \cdot 0 + 3 \cdot 4}{\sqrt{3^2 + 0^2 + 4^2}} = \frac{3}{5} = 1.5.$$

5. 10 pts. Suppose I is an open interval and $r : I \to \mathbb{R}^3$ is a twice continuously differentiable curve in \mathbb{R}^3. Suppose $t_0 \in I$ and

$$r'(t_0) = (1, 0, 1), \quad r''(t_0) = (1, 1, 1).$$

Determine $T(t_0), |v'(t_0)|, N(t_0),$ and $\kappa(t_0)$.

Solution. We have $v(t_0) = r'(t_0) = (1, 0, 1)$ so $|v'(t_0)| = \sqrt{2}$.
and
\[T(t_0) = \frac{v}{|v|}(t_0) = \frac{1}{\sqrt{2}}(1, 0, 1). \]
We have
\[a(t_0) = r''(t_0) = (1, 1, 1) \]
and
\[|v'(t_0) = (a \cdot T)(t_0) = \frac{2}{\sqrt{2}} = \sqrt{2}. \]
We have
\[(\kappa|v|^2N)(t_0) = (a - (a \cdot T)T)(t_0) = (1, 1, 1) - \sqrt{2} \frac{1}{\sqrt{2}} (1, 0, 1) = (0, 1, 0). \]
Since \(\kappa(t_0) > 0 \) we find that
\[N(t_0) = (0, 1, 0) \quad \text{and} \quad \kappa(t_0) = \frac{1}{|v|^2(t_0)} = \frac{1}{2}. \]

6. 15 pts. Let \(f(x, y) = xy - x + 2 \) and let \(R = \{(x, y) \in \mathbb{R}^2 : 0 \leq y \leq 4 - x^2 \} \).
Find the maxima and minima of \(f \) on \(R \). (Note that \(f \) is continuous and \(R \) is closed and bounded so both maxima and minima exist.)

Solution. First we find the critical points. We have
\[\frac{\partial f}{\partial x} = y - 1 \quad \text{and} \quad \frac{\partial f}{\partial y} = x \]
so the unique critical point is \((0, 1)\) which lies in \(R \).

Next we note the boundary of \(R \) consists of the arcs which are the ranges of the curves
\[C_1(x) = (x, 0) \quad \text{for } -2 < x < 2 \]
and
\[C_2(x) = (x, 4 - x^2) \quad \text{for } -2 < x < 2 \]
together with the endpoints of these arcs, namely the points \((\pm 2, 0)\). Since
\[\frac{d}{dx} f(C_1(x)) = \frac{d}{dx} (-x + 2) = -1 \]
there are no candidates for minimum or maximum points of \(f \) on \(R \) on \(C_1 \). Since
\[\frac{d}{dx} f(C_2(x)) = \frac{d}{dx} (x(4 - x^2) - x + 2) = 3(1 - x^2) \]
we find that \((\pm 1, 3)\) are candidates for minimum or maximum points of \(f \) on \(R \) on \(C_2 \). Finally, we consider the endpoints \((\pm 2, 0)\).

We consider the table

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(f(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
Thus the minimum value of f on R is 0 which occurs at $(-1, 3)$ and $(2, 0)$ and the maximum value of f on R is 4 which occurs at $(1, 3)$ and $(-2, 0)$.

7. 10 pts. Let

$$f(x, y) = \begin{cases} \frac{-x}{x^2 + y^2} & \text{if } x < y, \\ \frac{y}{x^2 + y^2} & \text{if } x \geq y. \end{cases}$$

Does $\lim_{(x,y) \to (0,0)} f(x, y)$ exist? If so, what is it? Why?

Solution. If $0 < x < \infty$ we have $f(x, 0) = 0$ and $f(x, x) = 1/x$. Thus

$$\lim_{x \to 0} f(x, 0) = 0 \quad \text{and} \quad \lim_{x \to 0} f(x, x) = \infty$$

so the limit does not exist.

8. 5 pts. Exhibit an equation for the tangent plane to the graph of $z = \cos xy$ at $(1, \pi/2, 0)$.

Solution. Note that $f(1, \pi/2) = 0$; otherwise the problem is incorrectly posed. We have

$$\frac{\partial f}{\partial x} = -y \sin xy \quad \text{which at } (1, \pi/2) \text{ equals } -\frac{\pi}{2}$$

and

$$\frac{\partial f}{\partial y} = -x \sin xy \quad \text{which at } (1, \pi/2) \text{ equals } -1.$$

Thus

$$z = -\frac{\pi}{2}(x - 1) + (-1) \left(y - \frac{\pi}{2}\right) = -\frac{\pi}{2}x - y + \pi$$

is the desired equation.

9. 5 pts. Calculate

$$\frac{\partial^2}{\partial x \partial y} e^{xyz}.$$

Solution. We have

$$\frac{\partial^2}{\partial x \partial y} e^{xyz} = \frac{\partial}{\partial x} (xze^{xyz})$$

$$= xe^{xyz} + (xz)(yz)e^{xyz}$$

$$= z(1 + xyz)e^{xyz}.$$

9. 11 pts. Suppose g, h are continuously differentiable functions on the interval I, f is a continuously differentiable function on \mathbb{R}^2 and

$$w(t) = f(g(t), h(t)) \quad \text{for } t \in I.$$

Suppose

$$2 \in I, \quad g(2) = 1, \quad g'(2) = 1, \quad h(2) = 4, \quad h'(2) = 3$$

as well as

$$f(1, 4) = 5, \quad \frac{\partial f}{\partial x}(1, 4) = 3$$

and

$$w'(2) = 4.$$
Determine \(\frac{\partial f}{\partial y}(1,4) \).

Solution. The Chain Rule says that
\[
 w'(t) = \frac{\partial f}{\partial x}(g(t),h(t))g'(t) + \frac{\partial f}{\partial y}(g(t),h(t))h'(t)
\]
for any \(t \in I \). If \(t = 2 \) then \((g(t),h(t)) = (1,4)\) so
\[
 4 = \frac{\partial f}{\partial x}(1,4)(1) + \frac{\partial f}{\partial y}(1,4)(3) = (3)(1) + \frac{\partial f}{\partial y}(1,4)(3)
\]
so
\[
 \frac{\partial f}{\partial y}(1,4) = \frac{1}{3}(4-3) = \frac{1}{3}.
\]

11. 15 pts. Suppose \(a, b, c, d \) are points in \(\mathbb{R}^3 \) which do not lie in a plane. Let \(P \) be the plane passing through \(a, b, c \) and let \(Q \) be the plane passing through the midpoints of the segments joining \(a \) to \(d \), \(b \) to \(d \) and \(c \) to \(d \), respectively. Show that \(P \) and \(Q \) are parallel.

Solution. The vector
\[
(b - a) \times (c - a)
\]
is normal to \(P \). The vectors
\[
m_a = \frac{1}{2}(d - a), \quad m_b = \frac{1}{2}(d - b), \quad m_c = \frac{1}{2}(d - c)
\]
are the midpoints of the segments joining \(a \) to \(d \), \(b \) to \(d \) and \(c \) to \(d \), respectively. We have
\[
(m_b - m_a) \times (m_c - m_a) = \left(\frac{1}{2}(a - b) \right) \times \left(\frac{1}{2}(a - c) \right) = \frac{1}{4}((b - a) \times (c - a))
\]
from which we infer that \(P \) and \(Q \) are parallel.