1. The equality of mixed partial derivatives.

Theorem 1.1. Suppose $A \subset \mathbb{R}^2$ and
\[f : A \to \mathbb{R}. \]
Suppose (a, b) is an interior point of A near which the partial derivatives
\[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \]
exist. Suppose, in addition, that
\[\frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x} \]
exist near (a, b) and are continuous at (a, b). Then
\[\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b). \]

Proof. Let
\[S(x, y) = f(x, y) - f(x, b) - f(a, y) + f(a, b) \quad \text{for} \ (x, y) \in A. \]
Let
\[A(x, y) = f(x, y) - f(a, y) \quad \text{and let} \quad B(x, y) = f(x, y) - f(x, b) \quad \text{for} \ (x, y) \in A. \]
By the Mean Value Theorem,
\[S(x, y) = A(x, y) - A(x, b) = \frac{\partial A}{\partial y}(x, \eta_A)(y - b) \]
\[= \frac{\partial f}{\partial y}(x, \eta_A) - \frac{\partial f}{\partial y}(a, \eta_A) \]
\[= \frac{\partial^2 f}{\partial x \partial y}(\xi_A, \eta_A)(x - a)(y - b) \]
for some η_A strictly between b and y and some ξ_A strictly between a and x; thus
\[\lim_{(x, y) \to (a, b)} \frac{S(x, y)}{(x - a)(y - b)} = \frac{\partial^2 f}{\partial x \partial y}(a, b). \]
Again by the Mean Value Theorem,
\[S(x, y) = B(x, y) - B(a, y) = \frac{\partial B}{\partial x}(\xi_B, y)(x - a) \]
\[= \frac{\partial f}{\partial x}(\xi_B, y) - \frac{\partial f}{\partial x}(\xi_B, b) \]
\[= \frac{\partial^2 f}{\partial y \partial x}(\xi_B, \eta_B)(x - a)(y - b) \]
for some ξ_B strictly between a and x and some η_A strictly between b and y; thus
\[\lim_{(x, y) \to (a, b)} \frac{S(x, y)}{(x - a)(y - b)} = \frac{\partial^2 f}{\partial y \partial x}(a, b). \]
\[\square \]

Remark 1.1. It turns out there is at least two more versions of this Theorem with different hypotheses but the same conclusion. They each have their merits.