
1. Arclength reparameterization.

Suppose I is an interval and
r : I → Rn

is a curve in Rn whose speed is never zero. Suppose t0 ∈ I and let

σ(t) =
∫ t

t0

|v|(τ) dτ for τ ∈ I.

Then σ is strictly increasing with range some interval H and

σ′(t) = |v|(t) for t ∈ I.

Let
φ : H → I

be the function which is inverse to σ. Then

φ(σ(t)) = t for t ∈ I and σ(φ(s)) = s for s ∈ H.

From the chain rule we obtain

σ′(t) =
1

φ′(σ(t))
for t ∈ I and φ′(s) =

1
σ′(φ(s))

for s ∈ H.

Let
q(s) = r(φ(s)) for s ∈ H.

I claim that q has unit speed; it is called an arclength reparameterization of
r. Indeed, by the chain rule,

|q′(s)| = |φ′(s)r′(φ(s))| =
∣∣∣∣

1
σ′(φ(s))

r′(φ(s))
∣∣∣∣ = 1,

as desired.

2. Curvature and other neat stuff.

Suppose I is an interval in R and

r : I → Rn

is a (parametric) curve in Rn. We have already defined speed, velocity and accel-
eration. Suppose the speed |v| never vanishes. Let

T =
1
|v|v

and let
K =

1
|v|T

′.

These vector functions are called the unit tangent and curvature vector of r,
respectively. Let

κ = |K|;
this nonnegative scalar function is called the curvature of r.

Now suppose κ > 0. Let

N =
1
κ
K

which is obviously equivalent to
1
|v|T

′ = κN.
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Note that

|v|′ = |r′|′ =
r′′ • r′

|r′| =
a • v
|v| .

Differentiation r′ = |v|T we find that

a = r′′ = |v|′T + |v|T′

=
a • v
|v|2 v + |v|2K

= compva + |v|2K
so

K =
1
|v|2 (a− compva)

and
a = compva + κ|v|2N.

A simple computation gives

κ = |K| =
√
|a|2|v|2 − (a • v)2

|v|3 .

Since

a • v =
1
2
| (v|2)′ = |v| |v|′

we find that
a = |v|′T + κ|v|2N.

The interesting thing about K, κ and N is that they depend only on the range
of r; in other words, they are independent of parameterization. This means, by
definition, that if

φ : H → I

is twice continuously differentiable and strictly increasing or decreasing with range
equal I, if

q(s) = r(φ(s)) for s ∈ H

and if J is the curvature vector of q then

(1) J(s) = K(φ(s)) for s ∈ H.

This immediately implies that the normal vector at s of q equals the normal vector
at φ(s) of r. Indeed, by the chain rule we find that

q′(s) = φ′(s)r′(φ(s));

in particular,

(2) compq′(s)x = compv(φ(s))x for x ∈ R3.

By Leibniz’ rule and the chain rule, we have

q′′(s) = φ′′(s)r′(φ(s)) + (φ′(s))2r′′(φ(s)) = φ′′(s)v(φ(s)) + (φ′(s))2a(φ(s));

keeping in mind (2) we find that

compq′(s)q
′′s) = φ′′(s)v(φ(s)) + (φ′(s))2compv(φ(s))a(φ(s)),

thereby establishing (1).
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3. The binormal and torsion.

Let r be a curve in R3 parameterized by arclength. Let T be its velocity and let
N be its normal. Let

B = T×N;
this vector (function) is call the binormal. Note that T, N and B are mutually
perpendicular unit vectors such that

[T,N,B] = 1.

Let τ be the scalar function determined the requirement that

N′ = −κT + τB;

τ is called the torsion. (Question: Why does this work? Answer: Because the
matrix 


N′ •T N′ •N N′ •B
T′ •T T′ •N T′ •B
B′ •T B′ •N B′ •B




is skewsymmetric.
It follows that

B′ = −τN.

In matrices we have 

T
N
B



′

=




0 κ 0
−κ 0 τ
0 −τ 0






T
N
B


 .

This leads to the following.

Theorem 3.1. r lies in a plane if and only τ = 0.

Proof. τ = 0 if and only if B is constant, say b in which case T lies in the plane
P = {x ∈ R3 : x • b = 0}. Now for any t in the domain of r we have

r(t) = r(t0) +
∫ t

t0

T(τ) dτ

which lies in the plane r(t0) + P . ¤

Theorem 3.2. r lies in a circle if and only if τ = 0 and κ is constant.

Proof. Suppose τ = 0 and κ is constant. From the preceding Theorem we know
that the range of r lies in a plane P . Moreover,

(
r +

1
κ
N

)′
= κT +

1
κ

(−κT) = 0

so there is a constant vector c such that

r +
1
κ
T = c.

That is, |r− c| = 1/κ so r lies in the circle in P with center c and radius 1/κ. ¤

Remark 3.1. It’s not too hard to show that given an interval I, a positive function
κ : I → R and a function τ : I → R there is a curve in space with curvature κ
and torsion τ ; moreover, if two curves have the same curvature and torsion one is
a rigid motion applied to the other.
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Now fix a point s0 in the domain of r. From Taylor’s Theorem we have

r(s) = r(s0) + (s− s0)r′(s0) +
(s− s0)2

2
r′′(s0) +

(s− s0)3

6
r′′′(s0) + O(|s− s0|4).

(3)

Now
r′ = T;

r′′ = T′ = κN;

r′′′ = (κN)′

= κ′N + κN′

= −κ2T + κ′N + κτB;

(4)

evaluating at s0 and substituting back in (3) we obtain
r(s) = r(s0)

+ (s− s0)T(s0)

+
(s− s0)2

2
κ(s0)N(s0)

+
(s− s0)3

6
(−κ(s0)2T(s0) + κ′(s0)N(s0)

+ κ(s0)τ(s0)B(s0))

+ O(|s− s0|4)
= r(s0)

+
(

(s− s0)− κ(s0)2
(s− s0)3

6

)
T(s0)

+
(

κ(s0)
(s− s0)2

2
+ κ′(s0)

(s− s0)3

6

)
N(s0)

+
(

κ(s0)τ(s0)
(s− s0)3

6

)
B(s0))

+ O(|s− s0|4).


