
Math 577: Mathematical Modeling Spring 2024

Problem Set 7 Assigned Fri Mar 8 Due Sat Mar 23

Introduction to the Calculus of Variations

0. Reading: Logan Chapter 4, sections: 4.1, 4.2.2, 4.3, 4.5.1, 4.4.

1. Use the classic Euler-Lagrange eqn to solve problems from Logan, page 243 (page 175 in 3rd Edition):

(a) Problem 2a with a = 1 and b = 2 and boundary conditions y(1) = 1 and y(2) = 2.

(b) Problem 4.

2. The second derivative test: Recall the problem of minimizing the arclength of the curve y(x)
from (0, 0) to (1, b):

min
y

J =

∫ 1

0

√
1 + (y′)2 dx y(x) = y∗(x) + ϵh(x)

In class we expanded J to O(ϵ) to obtain the critical point condition leading to the Euler-Lagrange
equation for y∗(x).

(a) Expand J to O(ϵ2) to obtain the second variation, δ2J , this is an integral that can have combi-
nations of h(x) and h′(x) in it (do not try to “reduce” it further).

(b) Show that the solution y∗(x) is indeed a local minimum by showing that the second variation is
positive for all nontrivial h(x).

For this problem, it is possible to show that any critical point could not be a maxima (without doing
any calculations): draw any ỹ(x) – it is always possible to make it even longer... so no max.

3. The Euler-Lagrange equations for constrained motion can be obtained by starting from the action
integral with the Lagrangian for general unconstrained motion and then plugging-in the parametric
equations describing the geometric constraint (the equations for the curve or surface) before carrying
out the variation with respect to the remaining variables.1

(a) Consider the action integral for two-dimensional motion of a mass subject to gravity

I =

∫
1
2m

[
x′(t)2 + y′(t)2

]
−mgy(t) dt

Consider the mass to be constrained to be on a circle, x2 + y2 = ℓ2. Derive the equation of a
pendulum by first plugging the parametric equations x(t) = ℓ cos θ(t), y(t) = ℓ sin θ(t) into I
and then applying the principle of least action for I(θ(t)).

(b) Consider the action integral for three-dimensional motion with gravity

I =

∫
1
2m

[
x′(t)2 + y′(t)2 + z′(t)2

]
−mgz(t) dt

Derive the equations of motion for a ball rolling on the surface of a cone, x2 + y2 = z2, by first
plugging the parametric equations x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t), z(t) = r(t) into I and
then applying the principle of least action for I(r(t), θ(t)).

4. (2019) Consider the problem of finding a locally optimum solution of the functional

J =

∫ 1

0

[
2y

d2y

dx2
+

∫ y(x)

0
e−t2 dt+ 3x2

∫ 1

x
[y′(t)]2 dt

]
dx

subject to the boundary condition y′(0) = y(0). Express the first variation of J in terms of an
integral,

∫ 1
0 [ODE for y(x)]h(x) dx, and boundary terms. (continued)

1This approach will be much shorter than the method using Lagrange multipliers that we will learn later. The Lagrange
multiplier approach is needed when parametric equations for the surface cannot be used or are not available.



5. NBC’s for the beam equation: The Lagrangian (L = T − V ) and Hamilton’s principle of least
action (J =

∫
Ldt and δJ = 0) also be applied to determine time-dependent partial differential

equations. Let y = u(x, t) be the transverse deflections of a rod or beam with length ℓ (domain:
0 ≤ x ≤ ℓ) with constant mass density ρ (mass per unit length), constant bending stiffness E (like a
spring constant) and constant moment of inertia I.
The overall total kinetic and potential energies of the beam are given by integrals over the length of the
beam of the corresponding energy density functions, e(u), E =

∫ ℓ
0 e(u) dx. The kinetic energy density

is 1
2ρ(∂tu)

2. The potential energy density due to bending (i.e. transverse deflection or buckling) is
1
2EI(∂xxu)

2. So the action integral for this problem is

J(u) =

∫ t1

t0

∫ ℓ

0

[
1

2
ρ

(
∂u

∂t

)2
− 1

2
EI

(
∂2u

∂x2

)2]
dx dt

Consider trial solutions ũ(x, t) = u∗(x, t) + ϵh(x, t).

Apply the principle of least action to derive the beam equation for u(x, t) and state all four sets of
the combinations of the two natural boundary conditions at x = 0 on u (or ux, uxx, ...) [no h’s or ϵ’s]
for this problem. Each BC will be a single-term homogeneous or inhomogeneous BC.2

Hints:

• J =
∫ t1
t0

Ldt. J is a double integral. Interchange order of integration when it might help.
Assume the variation of the solution is zero everywhere in x along the beam at start/end times,
t = t0 and t = t1.

• Assume the boundary conditions at x = 0 and x = ℓ are separated – there is no coupling
between conditions at x = 0 and conditions at x = ℓ. All of the terms from x = ℓ can be
handled similarly to your NBC’s for x = 0.

• The Lagrangian contains second derivatives. This just means that you’ll need to do more
integration-by-parts to get all of the derivatives off of h(x, t), but otherwise everything works as
usual.

6. (Optional, extra credit)The brachistochrone problem (meaning “least time” in Greek): Consider
the problem of finding the curve y = y(x) (shape of a ramp or slide3) for least-time descent for a
sliding object under the influence of gravity (acting in the y direction) starting from rest at from
(x, y) = (0, 1) at time t = 0, and ending at (x, y) = (1, 0) at t = T .
The integral for the time of travel can be expressed in terms of the speed of the object and shape of
the ramp by

T (y) =

∫ T

0
dt =

∫
ds

ds/dt
=

∫ 1

0

√
1 + y′(x)2

v(y)
dx

where the formula for arclength (ds =
√

1 + y′(x)2 dx) and the relation between the speed and the
arclength (the distance traveled) (v = ds/dt) were used.
Use the following steps to solve the problem:

(a) Assume there is no friction, so the total energy is E = 1
2mv2 +mgy, and it remains constant,

set by its initial value at t = 0. Use this to write an expression for v(y).

(b) Write the Euler-Lagrange ODE for y∗(x) for the functional T (y).

(c) Noting that the integrand function does not explicitly depend on the independent variable x, use
the Beltrami identity to obtain a simpler first-order ODE with for y∗(x) with an extra constant,
call it C.

2Assume the boundary conditions are separated – there is no coupling between conditions at x = 0 and conditions at x = ℓ.
The two BC’s at x = ℓ will then have the same kinds of options.

3Imagine a part of a roller coaster ride


