
Math 577: Mathematical Modeling Spring 2024

Problem Set 5 Assigned Fri Feb 16 Due Sat Feb 24

Perturbation methods for weakly-nonlinear oscillator problems

-1. Math 577 Test 1 Weds, Feb 28th, in class, on paper. Covers the course so far: HWs 1-4, Lectures
1-9, Logan, Chaps 1,3: scaling and nondimensionalization, similarity solutions, perturbation problems and
ODE boundary layers [NO oscillator problems].

For the week of the test there will be no HW due, just study/practice and prepare for the test! Office
hours will be shifted appropriately (new when2meet)

0. Reading: Logan, sections 3.1.2 and 3.1.3 and lecture notes (10, 11).

1. For each problem use the Poincare-Lindstedt method to determine the two-term approximation of the
solution, x(t) ∼ x̃0(τ) + ϵx̃1(τ) with τ = (ω0 + ϵω1)t. Find ω0, x̃0(τ), ω1 and x̃1(τ) (in that order) for:

(a)
d2x

dt2
+ 4x = −ϵx3 x(0) = a x′(0) = 0

This problem (called the Duffing oscillator) has a conserved quantity for each solution (called the
Hamiltonian), corresponding to the total mechanical energy. This problem has periodic oscillations
for any amplitude a > 0.

(b)
d2x

dt2
+ 9x = −ϵ(x2 − 1)

dx

dt
x(0) = a x′(0) = 0

This problem (called the van der Pol oscillator) has nonlinear damping/driving. Most of its solutions
have growing or decaying amplitudes. But there is one special IC value a∗ > 01 yielding a periodic
solution (called the limit cycle oscillation [LCO]). Find this a∗.

2. Use the method of multiple scales with T = ϵt for the van der Pol oscillator

d2x

dt2
+ 9x = −ϵ(x2 − 1)

dx

dt
ϵ → 0

to obtain a solution in the form x(t) ∼ x̃0(t, T ) = A(T ) sin(3t) +B(T ) cos(3t).

(a) Determine the amplitude equations for A(T ), B(T ).

(b) Let R(T ) =
√
A2 +B2. Use the amplitude equations for A(T ), B(T ) to determine the equation for

dR/dT = f(R). Determine the equilibrium (steady-state) values for R.

3. (Computer-aided algebra recommended) Use the Poincare-Lindstedt method for the problem

d2x

dt2
+ 25x = 12ϵ

(
dx

dt

)2

x(0) = 1, x′(0) = 0,

to find the first nontrivial correction to the oscillation frequency. How many terms in the expansion of
x(t) have you determined in obtaining that correction?

(continued)

1a = 0 yields the trivial solution, x(t) ≡ 0, not helpful.



4. Polar form and Fourier series: Use the method of multiple scales with T = ϵt for

d2x

dt2
+ ϵ

∣∣∣∣dxdt
∣∣∣∣ dxdt + x = 0, x(0) = 0, x′(0) = 1, ϵ → 0.

(a) Show that the leading order solution can be written in the polar form: x̃0(t, T ) = R(T ) sin(t+Φ(T )).
Relate the amplitude R and phase Φ to the coefficients A,B in x̃0 = A sin(t) + B cos(t). What are
the initial conditions for R,Φ?

(b) Derive and solve the amplitude equations for R(T ) and Φ(T ) to obtain the leading order solution
x(t) ∼ x̃0(t, T ).
Hint: You will need to calculate some terms in the Fourier series of the RHS forcing. Write the series
in terms of the variable s = t+Φ on −π < s < π, namely

∑∞
k=0 ak sin(ks) + bk cos(ks). (How many

terms do you really need?)

5. A damped, driven Duffing oscillator near resonance and e±it: For ϵ → 0, consider the problem for x(t),

d2x

dt2
+ ϵβ

dx

dt
+ x+ ϵαx3 = ϵ cos(t+ γϵt),

with given parameters α, β, γ. Use the slow-timescale T = ϵt in the method of multiple scales. Note the
presence of τ in the forcing term on the RHS. Hint: cos(t+ γT ).

(a) Show that the leading order solution can be written in the complex form x̃0(t, T ) = C(T )eit + C(T )e−it,
where z = x− iy is the complex conjugate of z = x+ iy. Express the complex-valued function C(T )
in terms of the real-valued functions A(T ), B(T ) used in x̃0 = A(T ) sin t+B(T ) cos t.

(b) Using (a) in the equation for x̃1(t, T ) find the two solvability conditions. Show that these reduce to
a single complex equation for dC/dT .
Hint: This is easier with complex exponentials, e±it, rather than trig fcns.

(c) The phenomenon of entrainment describes a periodic solution locking onto the behavior entirely set
by a forcing term, leaving no sign of the influence of the natural frequency from the unforced problem
(i.e. no homogeneous solution terms).
Setting C(T ) = MeiθeiγT in your equation from (b) where M is a (real-valued) constant magnitude
and θ is a (real-valued) constant phase. Find a formula for γ in terms of M , γ = γ(M), this is some-
times called a detuning relation. Note that α, β, γ, θ,M are real-valued constants. Separate your
result into real/imaginary parts to obtain two equations for γ, θ. (Do not try to solve these equations)

6. (2020) Consider the perturbed fourth-order oscillator equation for x(t):

d4x

dt4
+ 10

d2x

dt2
+ 9x = 2ϵ x cos(2t).

Using the method of multiple time scales, the solution can be expressed as x(t) = x̃(t, T ) with T = ϵt.

(a) Use the chain rule to write the full partial differential equation for x̃(t, T ) with ϵ > 0, where t, T are
considered as independent timescales. Hint: Use (d/dt)n = (∂t + ϵ∂T )

n for any n = 1, 2, · · · .
(b) For ϵ → 0, the solution can be written as an expansion, x̃ ∼ x̃0(t, T ) + ϵx̃1(t, T ). Write the

general form of the leading order term as the sum of four trigonometric terms with coefficients
A(T ), B(T ), C(T ), D(T ).
Hint: The characteristic polynomial can be factored as (m2 + α)(m2 + β).

(c) Write the amplitude equations that would need to be solved to determine A,B,C,D. (Do not try
to solve these eqns!)


