Perturbation methods for weakly-nonlinear oscillator problems

-1. Math 577 Test 1 Weds, Feb 28th, in class, on paper. Covers the course so far: HWs 1-4, Lectures 1-9, Logan, Chaps 1,3: scaling and nondimensionalization, similarity solutions, perturbation problems and ODE boundary layers [NO oscillator problems].
For the week of the test there will be no HW due, just study/practice and prepare for the test! Office hours will be shifted appropriately (new when2meet)
0. Reading: Logan, sections 3.1.2 and 3.1.3 and lecture notes (10, 11).

1. For each problem use the Poincare-Lindstedt method to determine the two-term approximation of the solution, $x(t) \sim \tilde{x}_{0}(\tau)+\epsilon \tilde{x}_{1}(\tau)$ with $\tau=\left(\omega_{0}+\epsilon \omega_{1}\right) t$. Find $\omega_{0}, \tilde{x}_{0}(\tau), \omega_{1}$ and $\tilde{x}_{1}(\tau)$ (in that order) for:
(a)

$$
\frac{d^{2} x}{d t^{2}}+4 x=-\epsilon x^{3} \quad x(0)=a \quad x^{\prime}(0)=0
$$

This problem (called the Duffing oscillator) has a conserved quantity for each solution (called the Hamiltonian), corresponding to the total mechanical energy. This problem has periodic oscillations for any amplitude $a>0$.
(b)

$$
\frac{d^{2} x}{d t^{2}}+9 x=-\epsilon\left(x^{2}-1\right) \frac{d x}{d t} \quad x(0)=a \quad x^{\prime}(0)=0
$$

This problem (called the van der Pol oscillator) has nonlinear damping/driving. Most of its solutions have growing or decaying amplitudes. But there is one special IC value $a_{*}>0^{1}$ yielding a periodic solution (called the limit cycle oscillation [LCO]). Find this a_{*}.
2. Use the method of multiple scales with $T=\epsilon t$ for the van der Pol oscillator

$$
\frac{d^{2} x}{d t^{2}}+9 x=-\epsilon\left(x^{2}-1\right) \frac{d x}{d t} \quad \epsilon \rightarrow 0
$$

to obtain a solution in the form $x(t) \sim \tilde{x}_{0}(t, T)=A(T) \sin (3 t)+B(T) \cos (3 t)$.
(a) Determine the amplitude equations for $A(T), B(T)$.
(b) Let $R(T)=\sqrt{A^{2}+B^{2}}$. Use the amplitude equations for $A(T), B(T)$ to determine the equation for $d R / d T=f(R)$. Determine the equilibrium (steady-state) values for R.
3. (Computer-aided algebra recommended) Use the Poincare-Lindstedt method for the problem

$$
\frac{d^{2} x}{d t^{2}}+25 x=12 \epsilon\left(\frac{d x}{d t}\right)^{2} \quad x(0)=1, \quad x^{\prime}(0)=0
$$

to find the first nontrivial correction to the oscillation frequency. How many terms in the expansion of $x(t)$ have you determined in obtaining that correction?
(continued)

[^0]4. Polar form and Fourier series: Use the method of multiple scales with $T=\epsilon t$ for
$$
\frac{d^{2} x}{d t^{2}}+\epsilon\left|\frac{d x}{d t}\right| \frac{d x}{d t}+x=0, \quad x(0)=0, \quad x^{\prime}(0)=1, \quad \epsilon \rightarrow 0
$$
(a) Show that the leading order solution can be written in the polar form: $\tilde{x}_{0}(t, T)=R(T) \sin (t+\Phi(T))$. Relate the amplitude R and phase Φ to the coefficients A, B in $\tilde{x}_{0}=A \sin (t)+B \cos (t)$. What are the initial conditions for R, Φ ?
(b) Derive and solve the amplitude equations for $R(T)$ and $\Phi(T)$ to obtain the leading order solution $x(t) \sim \tilde{x}_{0}(t, T)$.
Hint: You will need to calculate some terms in the Fourier series of the RHS forcing. Write the series in terms of the variable $s=t+\Phi$ on $-\pi<s<\pi$, namely $\sum_{k=0}^{\infty} a_{k} \sin (k s)+b_{k} \cos (k s)$. (How many terms do you really need?)
5. A damped, driven Duffing oscillator near resonance and $e^{ \pm i t}$: For $\epsilon \rightarrow 0$, consider the problem for $x(t)$,
$$
\frac{d^{2} x}{d t^{2}}+\epsilon \beta \frac{d x}{d t}+x+\epsilon \alpha x^{3}=\epsilon \cos (t+\gamma \epsilon t)
$$
with given parameters α, β, γ. Use the slow-timescale $T=\epsilon t$ in the method of multiple scales. Note the presence of τ in the forcing term on the RHS. Hint: $\cos (t+\gamma T)$.
(a) Show that the leading order solution can be written in the complex form $\tilde{x}_{0}(t, T)=C(T) e^{i t}+\overline{C(T)} e^{-i t}$, where $\bar{z}=x-i y$ is the complex conjugate of $z=x+i y$. Express the complex-valued function $C(T)$ in terms of the real-valued functions $A(T), B(T)$ used in $\tilde{x}_{0}=A(T) \sin t+B(T) \cos t$.
(b) Using (a) in the equation for $\tilde{x}_{1}(t, T)$ find the two solvability conditions. Show that these reduce to a single complex equation for $d C / d T$.
Hint: This is easier with complex exponentials, $e^{ \pm i t}$, rather than trig fcns.
(c) The phenomenon of entrainment describes a periodic solution locking onto the behavior entirely set by a forcing term, leaving no sign of the influence of the natural frequency from the unforced problem (i.e. no homogeneous solution terms).

Setting $C(T)=M e^{i \theta} e^{i \gamma T}$ in your equation from (b) where M is a (real-valued) constant magnitude and θ is a (real-valued) constant phase. Find a formula for γ in terms of $M, \gamma=\gamma(M)$, this is sometimes called a detuning relation. Note that $\alpha, \beta, \gamma, \theta, M$ are real-valued constants. Separate your result into real/imaginary parts to obtain two equations for γ, θ. (Do not try to solve these equations)
6. (2020) Consider the perturbed fourth-order oscillator equation for $x(t)$:

$$
\frac{d^{4} x}{d t^{4}}+10 \frac{d^{2} x}{d t^{2}}+9 x=2 \epsilon x \cos (2 t) .
$$

Using the method of multiple time scales, the solution can be expressed as $x(t)=\tilde{x}(t, T)$ with $T=\epsilon t$.
(a) Use the chain rule to write the full partial differential equation for $\tilde{x}(t, T)$ with $\epsilon>0$, where t, T are considered as independent timescales. Hint: Use $(d / d t)^{n}=\left(\partial_{t}+\epsilon \partial_{T}\right)^{n}$ for any $n=1,2, \cdots$.
(b) For $\epsilon \rightarrow 0$, the solution can be written as an expansion, $\tilde{x} \sim \tilde{x}_{0}(t, T)+\epsilon \tilde{x}_{1}(t, T)$. Write the general form of the leading order term as the sum of four trigonometric terms with coefficients $A(T), B(T), C(T), D(T)$.
Hint: The characteristic polynomial can be factored as $\left(m^{2}+\alpha\right)\left(m^{2}+\beta\right)$.
(c) Write the amplitude equations that would need to be solved to determine A, B, C, D. (Do not try to solve these eqns!)

[^0]: ${ }^{1} a=0$ yields the trivial solution, $x(t) \equiv 0$, not helpful.

