Regular and Singular Perturbation Problems

-1. Computer-Assisted Algebra Policy : You may always use Maple or Mathematica (or other computer software) to help check your work on problem sets. For problems marked as "Computer-Algebra Recommended" (CAR), parts of the algebra may be somewhat long and tedious to work out by hand, so you can use computer-based assistance to carry out the work. For these problems, you must include copies of the PDF pages of the complete steps and computer-generated solutions. For other problems (Non-CAR), you should write out your solution process by hand.
0. Reading from Logan: Sections 3.1, 3.2.

Also see the L05-demo.mws, L05-expansion.mws and L05-iteration.mws (expansion and iteration methods for the projectile motion example) files posted on Canvas for a guide on how to do the algebra for perturbation expansions via Maple.

1. (Computer-Algebra Recommended) Consider the problem for the vertical motion of a projectile:

$$
\frac{d^{2} x}{d t^{2}}=-\frac{1}{(1+\epsilon x)^{2}}, \quad x(0)=8, \quad x^{\prime}(0)=9 \epsilon \quad \text { with } \epsilon \rightarrow 0 .
$$

(a) Obtain the first three terms in the expansion of the solution, $x \sim x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2} x_{2}(t)$. Note: the initial height is $O(1)$ but the initial speed is slow, $O(\epsilon)$.
(b) Let T be the time when the projectile lands on the ground, $x(T)=0$. Use (a) to determine $T=T_{0}+\epsilon T_{1}+\epsilon^{2} T_{2}+O\left(\epsilon^{3}\right)$. Does it take more or less time to land compared to landing on a "flat Earth"?
Note: if you don't keep enough terms in the AE's for x and T your answers for T_{1}, T_{2} may not be correct.
(c) The solution from Lecture 5^{1} can be used with IC's $x(0)=\beta=O(1)$ and $x^{\prime}(0)=\alpha=O(1)$ to yield

$$
x^{\alpha \beta}(t)=\left(\beta+\alpha t-\frac{1}{2} t^{2}\right)+\epsilon\left(\beta t^{2}+\frac{\alpha}{3} t^{3}-\frac{1}{12} t^{4}\right)+O\left(\epsilon^{2}\right)
$$

Show that this solution reproduces your answer from part (a) if $\beta=8$ and $\alpha=9 \epsilon$ are plugged in and everything is re-sorted by powers of ϵ^{n}.
(d) The above solution is good for initial velocities being $O(1)$ or smaller. It does not work for singular initial velocities. Solve the problem with initial conditions $x(0)=5 / 2$ and $x^{\prime}(0)=1 / \epsilon$ using a singular scaling ${ }^{2}$ for the solution, $x(t)=X(t) / \epsilon$. Find $X(t) \sim X_{0}(t)+\epsilon X_{1}(t)+\epsilon^{2} X_{2}(t)$.
2. Consider the limit of $\epsilon \rightarrow 0$ for the equation

$$
(x-3)^{3}=24 \epsilon x^{2}-9 \epsilon^{2} x
$$

Solve for the single real-valued solution the by the iteration method to determine the first three terms in the asymptotic expansion: $x \sim \delta_{0}(\epsilon) x_{0}+\delta_{1}(\epsilon) x_{1}+\delta_{2}(\epsilon) x_{2}$. Hint: To find δ_{0} you don't need to expand the LHS.
(continued)

[^0]3. (2010) Consider the algebraic equation for x with $\epsilon \rightarrow 0$:
$$
\epsilon^{9} x^{3}-4 \epsilon^{4} x^{2}-28 \epsilon x-56-8 \epsilon^{3}=0
$$

Does this problem have a regular solution? Determine the leading order nontrivial term in the expansion of each of the three solutions. Show your checks for all six possibilities ${ }^{3}$ for the leading order dominant balance.
4. (2011) Consider the algebraic equation for x with $\epsilon \rightarrow 0$:

$$
\epsilon^{4} x^{3}-4 \epsilon x^{2}+8 \epsilon^{2} x+36=0
$$

(a) Let $x=\delta(\epsilon) X$ and use the method of dominant balance to find the two distinguished limits that yield the three solutions of this equation. Hint: let $\delta=\epsilon^{\alpha}$.
(b) Write the rescaled equation for $X(\epsilon)$ for each of the distinguished limits and find the first two non-zero terms in the expansion of each solution, $X \sim X_{0}+\delta_{1} X_{1}$.
5. Consider the problem for $x(t)$ on $t \geq 0$ with $\epsilon \rightarrow 0$:

$$
\frac{d x}{d t}-5 \epsilon x^{2}=3 e^{2 \epsilon t} \quad x(0)=4 \cos (\epsilon)
$$

(a) Find the first three terms in the expansion of the solution, $x(t) \sim x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2} x_{2}(t)$. (Computer-assisted algebra optional)
(b) Determine the range of times, $0 \leq t<O\left(\epsilon^{\alpha}\right)$, for which the terms in the expansion satisfy asymptotic ordering, i.e. $x_{0} \gg \epsilon x_{1} \gg \epsilon^{2} x_{2} \gg \cdots$.
(We will discuss how to deal with related problems with competing limits $(\epsilon \rightarrow 0$ vs. $t \rightarrow \infty)$ and the break-down of asymptotic ordering a bit later. But for this problem, we see that the solution from (a) is valid only for a limit range of times.)
6. (Optional, extra credit) While most typical perturbation problems yield gauge functions as powers of epsilon, $\delta_{n}=\epsilon^{n}$ or $\delta=\epsilon^{\alpha}$, these are not the only things that can occur. This example shows one of the different types of $\delta(\epsilon)$'s that can also come up.
Use the iteration method with $x \sim \delta_{0}(\epsilon) x_{0}+\delta_{1}(\epsilon) x_{1}$ to find first two terms in the expansion of the large positive real solution of the equation

$$
2 x^{2} e^{-5 x}=8 \epsilon \quad \epsilon \rightarrow 0 .
$$

Note that this equation has three real roots; the two small roots are $x \sim \pm 2 \epsilon^{1 / 2}+10 \epsilon$ (you don't need to do anything with these). The root we are interested in has $\delta_{0}(\epsilon) \rightarrow \infty$ (hence x is large) as $\epsilon \rightarrow 0$.
Hint: Before starting the iteration approach, first take the logarithm, $\ln (\cdots)$, of both sides of the equation and use the properties of the log to separate terms as much as possible, $\ln (a b)=\ln (a)+\ln (b)$.

[^1]
[^0]: ${ }^{1}$ See the Maple worksheets
 ${ }^{2} x=\delta X$ with $\delta=1 / \epsilon$. Convince yourself that this scaling yields a non-singular problem for $X(t)$.

[^1]: ${ }^{3} 6=\binom{4}{2}$ combinations. Hint: Why don't you have to check $10=\binom{5}{2}$ combinations? (Don't do 10, the other 4 can't work!)

