Due Sat Feb 3

$\underline{\text { Nondimensionalization and Scaling }}$

0. Reading: Logan section 1.2. The notes for Lecture 4 may also be particularly useful.
1. Logan, Section 1.2.3 Exercises, page 43: Problem 7 ("A rocket blasts off...").
2. (2009) Consider the dimensional equation for $U(X, T)$:

$$
\frac{\partial U}{\partial T}+(A+B U) \frac{\partial^{2} U}{\partial X^{2}}+C \frac{\partial^{3} U}{\partial X^{3}}=0
$$

U is a density $\left(\mathrm{kg} / \mathrm{m}^{3}\right), X$ is position (m), and T is time (s).
(a) (6 pts) Determine the units of the dimensional constants A, B, C.
(b) (18 pts) Determine scalings $\underline{U}, \underline{L}, \underline{T}$ that yield a dimensionless equation for $u(x, t)$ with all coefficients normalized to 1.
3. (2022) Consider the third-order ODE for $X(T)$, given in dimensional form,

$$
A \frac{d^{3} X}{d T^{3}}+B\left(\frac{d X}{d T}\right)^{2}+C T X^{3}=D T^{4}
$$

where A, B, C, D are given positive dimensional constants.
Let $X=\underline{L} x(t)$, with $T=\underline{T} t$ where $\underline{L}, \underline{T}$ are characteristic scaling constants.
Select the characteristic scales to normalize as many terms as possible in the equation.
For each of the four ways to scale the equations, determine $\underline{L}, \underline{T}$ and the single remaining dimensionless parameter (Π) in terms of the given quantities. Simplify your answers as much as possible.
4. (2020) Consider the dimensional equations for solutions $X(T), Y(T)$,

$$
\frac{d X}{d T}=A X Y-B Y^{3} \quad \frac{d Y}{d T}=-C X^{2}+D T
$$

where A, B, C, D are given positive dimensional constants.
Let $X(T)=\underline{X} x(t), Y(T)=\underline{Y} y(t)$, and $T=\underline{T} t$ with $\underline{X}, \underline{Y}, \underline{T}$ being characteristic concentration and time-scales.
Select the characteristic scales to normalize all of the coefficients in the x-rate equation and as many as possible in the other equation.

For each of the three ways to scale the equations:
(a) Write $\underline{X}, \underline{Y}, \underline{T}$ and the single remaining dimensionless parameter in terms of the given quantities. Simplify your answer as much as possible.
(b) Write the scaled y-ODE with the dimensionless parameter.
5. Consider the dimensional problem for projectile motion on the surface of the Earth:

$$
\frac{d^{2} X}{d T^{2}}=-\frac{G M}{(R+X)^{2}} \quad X(0)=3 \mathrm{~m} \quad X^{\prime}(0)=-5 \mathrm{~m} / \mathrm{sec}
$$

Let $X(T)=\underline{L} x(t)$ and $T=\underline{T} t$. Consider the "small Earth" limit with

$$
R \rightarrow 0 \quad M=O(1)
$$

(a) Choose your characteristic scales for $\underline{L}, \underline{T}$ to normalize as many terms as possible and ensure that none of the scaled coefficients in the problem blow-up in the limit.
(b) Write the scaled (normalized) problem, identify all remaining dimensionless parameters.
(c) Identify the limiting small dimensionless parameter $(\epsilon \rightarrow 0)$ and write the leading order problem (where the limiting parameter is set to zero).

Hint: For (a) there are three possible choices for the scaled problem, you can use any of them.
6. Consider the dimensional equations describing a system of chemical reactions for the concentrations of three chemicals (X, Y, Z) :

$$
\begin{array}{ll}
\frac{d X}{d T}=A-B Y & X(0)=X_{0} \\
\frac{d Y}{d T}=C X-D Z & Y(0)=Y_{0} \tag{1}\\
\frac{d Z}{d T}=E Y-F Y^{2}+G Y^{3}-H Z & Z(0)=Z_{0}
\end{array}
$$

where A, B, C, D, E, F, G, H and the initial conditions X_{0}, Y_{0}, Z_{0} are given dimensional constants. By scaling X, Y, Z, T (i.e. $X(T)=\underline{X} x(t)$ and similarly for the others) show that these equations can be non-dimensionalized to the form:

$$
\begin{array}{rlrl}
\frac{d x}{d t} & =\alpha-y & x(0)=\mu \\
\beta \frac{d y}{d t} & =x-z & & y(0)=\sigma \tag{2}\\
\gamma \frac{d z}{d t} & =y-y^{2}+\frac{1}{3} \delta y^{3}-z & & z(0)=\omega
\end{array}
$$

(a) Determine the characteristic scalings $\underline{X}, \underline{Y}, \underline{Z}, \underline{T}$ and the dimensionless parameters (Greek letters) in terms of $A-H$ and X_{0}, Y_{0}, Z_{0}.
(b) If $\gamma=0$ in (2), show that the problem reduces to a system of two ODE's for x and $y: d x / d t=$ $p(x, y)$ and $d y / d t=q(x, y)$. Find the condition that the initial concentrations μ, σ, ω must satisfy in order to avoid a contradiction for this reduced problem.
(c) If $\beta=0$ in (2), show that the problem can be reduced to a single ODE for $y: d y / d t=r(y)$. Find the two conditions that the initial concentrations μ, σ, ω must satisfy in order to avoid a contradiction for this reduced problem.

Hint: For parts (b,c), start each from the system in form (2), you will not need anything from part (a).

