Problem Set 2

Assigned Fri Sep 16

Due Fri Sep 23

Basic methods for Asymptotics of Integrals

- 0. Reading: Bender and Orszag, sections 6.1–6.3 pages 247–261. (Hinch section 3.4 covers nonlocalized integrals)
- 1. Bender and Orszag, page 307, problem 6.7a,b,c,d,h.

For each integral, if the AE starts with a constant, continue to next order to find the first term with non-trivial dependence on x.

For (d), express the leading constant in terms of an exponential integral, see page 575.

- 2. Bender and Orszag, page 308, problem 6.17a.
- 3. Bender and Orszag, page 308, problem 6.18b Either use integration by parts, or change to an integral on \int_x^{∞} via the change of variables u = xt and then introduce a δ breakpoint, or see page 252.
- 4. Consider the nonlinear ordinary differential equation

$$\frac{d^2u}{dx^2} = u - \frac{3}{2}u^2. {1}$$

In terms of phase plane analysis, this problem has a center point at u=2/3 and and a saddle point at u=0. Surrounding the center point, there is a continuous family of periodic solutions u(x) with minima covering the range $0 \le u_{\min} \le 2/3$. Multiplying equation (1) across by du/dx and integrating each term $\int (\cdot) dx$, we can obtain the first-order equation (called the first integral),

$$\left(\frac{du}{dx}\right)^2 = u^2 - u^3 + C \tag{2}$$

where C is a constant of integration.

(a) If we define ϵ by $u_{\min} = \epsilon > 0$, use the first integral to show that the corresponding maximum of the periodic solution is

$$u_{\text{max}} = \frac{1}{2} \left(1 - \epsilon + \sqrt{1 + 2\epsilon - 3\epsilon^2} \right)$$

Hint: If the local minimum of u(x) is $u = \epsilon$, what is the value for C in (2)?

(b) Using (2), the period of oscillation for the periodic solutions can be written as

$$L = 2 \int_{u=u_{\rm min}}^{u=u_{\rm max}} dx = 2 \int_{u_{\rm min}}^{u_{\rm max}} \frac{du}{du/dx} = 2 \int_{\epsilon}^{u_{\rm max}(\epsilon)} \frac{du}{\sqrt{u^2 - u^3 - \epsilon^2 + \epsilon^3}} = L(\epsilon)$$

Find the leading order behavior of $L(\epsilon)$ for $\epsilon \to 0$.

Hint: Start with a change of variables to shift $u = \epsilon + t$.