Math 551: Applied Partial Differential Equations and Complex Variables (Fall 2017) [4049]

Mathematical methods for solving problems in linear partial differential equations: linear operators and adjoint problems, eigenfunction expansions, Fourier series, Sturm-Liouville problems, orthogonal functions and generalized Fourier series. Solutions via Green's functions. Complex variables for contour integrals and solutions via integral representations. Integral transforms: Fourier and Laplace transforms.

Textbook: Applied Partial Differential Equations (5th ed), by Richard Haberman, Prentice Hall (2013)

Prerequisites

Background in linear algebra and ordinary differential equations: [Math 221 and 356], or [Math 216 and 353], or equivalents.

Schedule

MWF 4:55-5:45 pm, Room 207 Hudson Hall

Instructor

Thomas Witelski, Professor, Dept of Math

Office hours

Mondays 10:00am-noon and Tuesdays noon-2:30pm, Room 295 Physics Building, or by email request for an appointment for other times.

Problem sets

Course materials

  • Problems accessing the sheets? All materials are posted at the Duke Sakai website (class members only) or access locally from any *.duke.edu computers or try Duke OIT VPN (Start VPN @ portal.duke.edu).