1. (23 pts) Evaluate the following complex integral on the closed counterclockwise-oriented contour C given by the circle of radius $\sqrt{2}$ whose center is $z_c = \frac{1}{2} + i$:

$$\oint_C \frac{e^{3z}}{(z - 1)^2(z^2 + 1)\sin(\frac{1}{2}\pi z)}
dz$$

Note that $\sin(z)$ has zeros only on the real axis.

(a) (5 pts) Identify the positions and types of the singularities inside C.

(b) (18 pts) Calculate the residues and evaluate the integral. Simplify your answer as much as possible.

2. (26 pts) Use complex contour integration to calculate the value of the integrals:

$$I_1 = \int^{\infty}_{-\infty} \frac{dx}{(x - 1)^2 + 1} \quad I_2 = \int^{\infty}_{0} \frac{dx}{(x - 1)^2 + 1}$$

Show all work and justify your choice of contour for each. (I_1: 7 pts, I_2: 19 pts)

3. (34 pts) Calculate the value of the real integral

$$I = \int^{\infty}_{-\infty} \frac{x^2e^{-x/2}}{1 + e^{-x}}
dx \quad \text{using the contour integral} \quad \oint_C \frac{z^2e^{-z/2}}{1 + e^{-z}}
dz$$

where C is a box contour with top segment given by $z = x + ib$ for some positive constant b. Note that $\int^{\infty}_{-\infty} \frac{e^{-x/2}}{1 + e^{-x}}
dx = \pi$

(a) (5 pts) Sketch the contour and parametrize all segments of the contour integral.

(b) (4 pts) Determine a value for b where the integral on the top segment can be related to I.

(c) (8 pts) Show that the contribution of the integral on each vertical segment vanishes.

(d) (17 pts) Evaluate the contour integral and give the value for I simplified as much as possible.

4. (17 pts) Evaluate the trigonometric integral using a complex contour integral:

$$I = \int^{2\pi}_{0} \frac{e^{\cos\theta + i\sin\theta}}{5 - 4\cos\theta}
d\theta$$

(a) (5 pts) Write the contour integral, sketch the contour, and identify the singularities inside.

(b) (12 pts) Evaluate the contour integral and give the value for I. Simplify your answer as much as possible.