Before you start, please read the syllabus carefully.

1. For any ring R, prove that there exists a unique ring homomorphism from \mathbb{Z} to R.

2. Find the number of group homomorphisms from A to B, and the number of ring homomorphisms from A to B (Just numbers.)

 (a) $A = \mathbb{Z}$, $B = C_6$
 (b) $A = C_6$, $B = \mathbb{Z}$
 (c) $A = C_6$, $B = C_3$
 (d) $A = C_3$, $B = C_6$

3. Let a be a rational number and define $f : \mathbb{Q}[x] \to \mathbb{Q}$ to be $f(g(x)) = g(a)$. Prove that f is a ring homomorphism.

4. Let R be a ring and S be a subset of R. We define the ideal generated by S to be the smallest ideal containing S.

 (a) Prove that $\langle 1 \rangle = R$.
 (b) Prove that $\langle S \rangle = \{ \sum_{i \leq N} r_i s_i t_i \mid r_i, t_i \in R, s_i \in S \}$.

5. For the ring of integers, denote $I = \langle 5 \rangle$, and $J = \langle 3 \rangle$

 (a) Prove that the ideal generated by n is $\langle n \rangle = \{ kn \mid k \in \mathbb{Z} \}$.
 (b) Compute $I + J$, $I \cdot J$ and $I \cap J$.

6. For the ring of integers:

 (a) Prove that any subgroup of $(\mathbb{Z}, +)$ is cyclic.
 (Hint: Use the fact that if $\gcd(a, b) = d$, then $\exists s, t \in \mathbb{Z}$ such that $as + bt = d$).
 (b) Prove that any subgroup of $(\mathbb{Z}, +)$ is also an ideal of $(\mathbb{Z}, +, \times)$.