Permutation Group / Alternating Group

denoted S_n denoted A_n

Recall,

$$S_n := \{ \sigma \mid \sigma : \{1, \ldots, n\} \to \{1, \ldots, n\} \text{ that is bijective} \}$$

is composition.

Goal: Define A_n, describable A_n.

Normal Subgrp.

Recall we defined quotient ring for a ring R by an ideal $I \subseteq R$, R/I.

to be $(\{ \text{equivalence classes of } \sim \} , + , \times)$.

Here $a \sim b$ in R if

$$a - b \in I.$$

Q: Can we do similar things for grp?

Last time, given $H \subseteq G$, we define \sim_H to be

$$g_1 \sim g_2 \iff g_1^{-1}g_2 \in H$$

Can we define $\sim_{\text{grp operation}}$ on $\{ \text{equivalence classes} \}$

by picking representatives?

$$g \cdot H := \{ g \cdot h \mid h \in H \}$$
\(g_1 \cdot H \) and \(g_2 \cdot H \) are the representatives for the two cosets.

\[
\tilde{g}_1 \in G \quad \tilde{g}_2 \in G
\]

\[
(g_1 \cdot H) \cdot (g_2 \cdot H) = g_1 g_2 H
\]

We need to check whether this multiplication is well-defined?

\[
\tilde{g}_1 \cdot \tilde{g}_2 \in H \iff \tilde{g}_1 \sim g_1 \quad \tilde{g}_2 \sim g_2
\]

\[
\iff (\tilde{g}_1 \cdot \tilde{g}_2)^{-1} \cdot (g_1 \cdot g_2) \in H
\]

Now since \(\tilde{g}_1 \in g_1 \cdot H \) we have \(\tilde{g}_1 = g_1 \cdot h_1 \) for some \(h_1 \in H \)

Similarly, we have \(\tilde{g}_2 = g_2 \cdot h_2 \) for some \(h_2 \in H \)

\[
\iff (g_2 \cdot h_2)^{-1} \cdot (g_1 \cdot h_1)^{-1} \cdot g_1 \cdot g_2 \in H
\]

\[
\iff h_2^{-1} \cdot g_2^{-1} \cdot h_1^{-1} \cdot g_1 \cdot g_2 = h_2^{-1} \cdot g_2^{-1} \cdot h_1^{-1} \cdot g_1 \cdot g_2 \in H
\]

\[
\iff (g_1 \cdot h_1)^{-1} \cdot g_2 \cdot h_2 \cdot h_1^{-1} \cdot g_1 \cdot g_2 \in H
\]

Notice that we can choose any \(h_1 \in H \) and any \(g_2 \in G \) since we can choose any representative for \(g_1 \cdot H \) and \(g_2 \cdot H \) and we can choose any two cosets to do group operation.
In order to make the operation on cosets well-defined, we need \(H \leq g_2^{-1} H g_2 \) for any \(g_2 \in G \).

Def (normal subgrp). A subgroup \(H \leq G \) is normal if \(H \leq g^{-1} H g \) for any \(g \in G \).

Rmk: For finite groups, \(H \leq g^{-1} H g \iff H = g^{-1} H g \) since \(1^{-1} H 1 = 1g^{-1} H g1 \).

We will write \(H \triangleleft G \) to imply \(H \) is normal in \(G \).

By the previous deductions, we show that:

Lemma: Given \(N \triangleleft G \), we have

\(\{ \text{cosets of } N \} \), \(\cdot \) forms a grp.

pf: Since \(N \triangleleft G \), the operation \(\cdot \) is well-defined.

The identity law / associative law / inverse law:

\[
(e \cdot H) \cdot (g \cdot H) = (g \cdot e) \cdot H = gH, \quad (g_1H)(g_2H)(g_3H) = (g_1H)(g_2Hg_3H)
\]

all follows from that of the original grp \(G \).

Def (quotient grp) Given \(N \triangleleft G \), then the grp

\(\{ \text{cosets of } N \}, \cdot \)

is called the quotient grp of \(G \) by \(N \). Denote it by \(G/N \).
Lagrange

Fact: \(|G/N| = \frac{|G|}{|N|} \neq [G : N] \)

Example: \(S_3 \) contains 6 elements.

Flip
\[G = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \]

Rotation
\[T = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \]

Identity
\[\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \]

Q: 1) \(H_1 = <G> \) How large is \(H_1 \)?
Is \(H_1 \) normal in \(G = S_3 \)?

2) \(H_2 = <T> \) How large?
Normal?

Ans. 1) \(T^{-1} G T = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \neq H_1 \)

\(H_1 \) not normal

2) \([S_3 : H_2] = 2\). So \(H_2 \) must be normal in \(S_3 \).

\(H_2 \ 6\cdot H_2 \quad 6H_2 = H_2 \ 6 \)
Lemma. Given \(H \leq G \), if \([G:H]=2\), then \(H \triangleleft G \).

pf: \(H \triangleleft G \iff gHg^{-1} = H \ \forall \ g \in G \)
\[\iff Hg = gH \ \forall \ g \in G \]

right coset left coset.
\[\{ hg \mid h \in H \} \quad \{ gh \mid h \in H \} \]

But if \([G:H]=2\), the \(G = H \cup gH \)
\[g \in G, \quad G = H \cup H.g_g \]

so \(g,H = H.g_g \)
Actually \(\forall \ g \notin H \) we have \(gH = g.H \)

\[H.g_g = H.g \]

so \(\forall g \in G, \quad gH = Hg \).

Another method for \(2) \) is to check

\[6 \cdot 2 : 6 \in <2> \]

Lemma: \(\forall g, \quad gHg^{-1} = H \iff \)

\(\forall g_i, \quad g_iHg_i^{-1} = H \) where \(g_i \) are within a set of representatives for left cosets of \(H \).

(\(i.e. \ G = \bigcup_{i=1}^{k} g_iH, \ k = [G:H] \)).

Pf. Exercise.
This implies it is enough to check
\[g^{-1} H g \subseteq \mathcal{C} \, . \]

After Class Remark:

The definition on normal subgroups require
\[H \leq g^{-1} H g \quad \forall g \in G \]
notice that by multiplying on both sides by \(g \) and \(g^{-1} \)
\[g H g^{-1} \leq H \, . \]
so \[H \leq g^{-1} H g \quad \forall g \in G \quad \Rightarrow \quad H = g^{-1} H g \quad \forall g \in G \]
This does not require a "size" argument in the lecture.