Homework 9, Math 401

due on April 13, 2020

Before you start, please read the syllabus carefully.

1. Given \(n \geq 4 \).

 (a) Show that \(A_n \) can be generated by all 3-cycles (meaning that the smallest subgroup containing all 3-cycles is \(A_n \) itself).

 (b) Show that if \(H \triangleleft A_n \) is a normal subgroup, and \(H \) contains one 3-cycle, then \(H \) contains all 3-cycles.

2. We study \(G = A_4 \).

 (a) Determine all subgroups of \(A_4 \), and determine whether they are normal or not.

 (b) Write down all increasing sequences of subgroups \(G_0 = e \subset G_1 \subset G_2 \subset \cdots \subset G_n = G \) where \(G_i \triangleleft G_{i+1} \) and \(G_{i+1}/G_i \) is abelian.

Answer:

1) Aside from \(A_4 \) and \(\{e\} \), there are 4 subgroups isomorphic to \(C_3 \), \(\langle (123) \rangle \), \(\langle (124) \rangle \), \(\langle (134) \rangle \), \(\langle (234) \rangle \), they are not normal, e.g. \((421)(123)(124) = (134) \). There are 1 subgroup isomorphic to \(C_2 \times C_2 \), it is \(\{(12)(34), (13)(24), (14)(23)\} \). It is normal since conjugation does not change cycle type, and all elements with such cycle types are in this subgroup. There are 3 subgroups of this order 4 normal subgroup, \(\langle (12)(34) \rangle \), \(\langle (13)(24) \rangle \), \(\langle (14)(23) \rangle \), they are not normal, e.g. \((123)(12)(34)(321) = (23)(14) \). 2) \(\{e\} \subset \langle (12)(34) \rangle \subset \{ (12)(34), (13)(24), (14)(23) \} \subset G \).

Other options include replacing \(G_1 \) by \(\langle (13)(24) \rangle \) or \(\langle (14)(23) \rangle \), or simply drop \(G_1 \) in the above sequence. These are all the options since \(\{ (12)(34), (13)(24), (14)(23) \} \) is the only non-trivial normal subgroup of \(G \) and with quotient group \(C_3 \).

3. Let \(G \) be a finite group. Define a relation on \(G \): \(g_1 \sim g_2 \) iff there exists \(\sigma \in G \) such that \(\sigma g_1 \sigma^{-1} = g_2 \). Show that \(\sim \) is an equivalence relation. (The equivalence class is called conjugacy classes of \(G \).)

4. Let \(G \) be a finite group. Define a relation on subgroups of \(G \): \(H_1 \sim H_2 \) iff there exists \(\sigma \in G \) such that \(\sigma H_1 \sigma^{-1} = H_2 \). Show that \(\sim \) is an equivalence relation. (The equivalence class is called conjugacy classes of subgroups of \(G \).)

5. Let \(G \) be a finite group and \(N \triangleleft G \) be a normal subgroup and \(H \subset G \) be a subgroup.

 (a) We denote \(N \cdot H \) to be the subset \(\{ n \cdot h \mid n \in N, h \in H \} \) of \(G \). Show that \(N \cdot H \) is a subgroup.
(b) Show that \(N \cdot H = H \cdot N \).
(c) Show that \(N \cap H \) is a normal subgroup of \(H \).
(d) Show that \(N \cap H \) is normal, we have \(hN^{-1}N = N \). Therefore \(n_1h_1n_2h_2 = (n_1h_1n_2h_2)N \). Similarly, any element \(hN = hN^{-1} \cdot h \in N \cdot H \). Therefore the two sets are equal.

c) For any element \(h \in H \), we have \(hN \cap Hh^{-1} \cap hNh^{-1} = N \cap H \). Therefore \(N \cap H \) is normal in \(H \). d) Define the map \(f : H \to N \cdot H/N \) with \(f(h) = hN \). It is easy to check \(f \) is a group homomorphism (check here by yourself). The map \(f \) is surjective since by (b) any coset of \(N \) can be written as \(hN = hN \) for certain element \(h \in H \). The kernel of \(f \) is \(N \cap H \). By fundamental homomorphism for group, we have \(N \cdot H/N \simeq H/(N \cap H) \).

6. Let \(N \trianglelefteq G \) be a normal subgroup of \(G \). Show that if \(G \) is solvable, then \(G/N \) is solvable.

7. Given a finite group \(G \). Prove that if \(|G| = p \) and \(p \) is a prime number, then \(G \simeq C_p \), where \(C_p \) is the cyclic group with order \(p \).

8. Given a finite group \(G \). Prove that if \(|G| = p^n \) some prime power, then there exists \(g \in G \) with \(\text{ord}(g) = p \).

9. Let \(G \) be a finite group. Prove that if \(G/N_1 \) and \(G/N_2 \) are abelian, then \(G/(N_1 \cap N_2) \) is also abelian. (Therefore we can define \(G^{ab} \) to be the maximal quotient group \(G/N \) that is abelian, we call it the abelianization of \(G \).)

10. Denote \([G, G] \) to be the smallest subgroup of \(G \) containing \(g_1g_2g_1^{-1}g_2^{-1} \) for all \(g_1, g_2 \in G \). Prove that \(G/[G, G] = G^{ab} \).