Homework 7, Math 401

due on March 16, 2020

Before you start, please read the syllabus carefully.

1. Determine the splitting field of \(f(x) = x^5 - 2 \in \mathbb{Q}[x] \). **Answer:** \(\mathbb{Q}^{\sqrt[5]{2}, 2^{1/5}} \)

2. Consider \(f(x) = x^8 - 1 \in \mathbb{Q}[x] \).

 (a) Determine the factorization of \(f(x) \) into product of irreducible polynomials over \(\mathbb{Q}[x] \). **Answer:** \(x^8 - 1 = (x^4 + 1)(x^2 + 1)(x + 1)(x - 1) \)

 (b) Determine the splitting field \(K \) of \(x^4 + 1 \in \mathbb{Q}[x] \). **Answer:** \(\mathbb{Q}[x]/(x^4 + 1) \simeq \mathbb{Q}[\zeta_4] \)

3. Denote \(K = \mathbb{Q}[\sqrt[5]{2} + \sqrt[5]{3}] \subset \mathbb{C} \).

 (a) Prove that \(K \subset F := \mathbb{Q}[\sqrt{2}, \sqrt{3}] \). **Answer:** It follows since \(\sqrt{2} + \sqrt{3} \in F \).

 (b) Determine \([F : \mathbb{Q}] \). **Answer:** 4

 (c) Denote \(\alpha = \sqrt[5]{2} + \sqrt[5]{3} \). Prove that \(1, \alpha, \alpha^2, \alpha^3 \) are linearly independent over \(\mathbb{Q} \). **Answer:** By computation \(\alpha^2 = 7 + 2\sqrt[5]{10} \) and \(\alpha^3 = 17\sqrt[5]{2} + 11\sqrt[5]{5} \). Suppose \(a + b\alpha + c\alpha^2 + d\alpha^3 = 0 \) with \(a, b, c, d \in \mathbb{Q} \), comparing the coefficients of \(1, \sqrt[5]{2}, \sqrt[5]{3}, \sqrt[5]{10} \), we get \(a + 7c = 0 \), \(c = 0 \), \(17d + b = 0 \), \(11d + b = 0 \). Solving this set of linear equations, we get \(a = b = c = d = 0 \).

 (d) Prove that \(K = F \). **Answer:** They have the same degree.

 (e) Prove that \(\{1, \alpha, \alpha^2, \alpha^3\} \) is a basis for \(K \) as a vector space over \(\mathbb{Q} \). **Answer:** We have shown before that they are linearly independent. On the other hand, \(K = \mathbb{Q}[\alpha] \) therefore every elements in \(K \) are linear combinations of \(\{1, \alpha, \alpha^2, \alpha^3\} \).

 (f) Write \(\alpha^4 \) as a linear combination of \(\{1, \alpha, \alpha^2, \alpha^3\} \), i.e., find \(a, b, c, d \in \mathbb{Q} \) such that

 \[
 \alpha^4 = a + b\alpha + c\alpha^2 + d\alpha^3.
 \]

 Answer: By computation, \(\alpha^4 = 89 + 28\sqrt[5]{10} \). Again solving for \(a, b, c, d \) by comparing the coefficients of \(1, \sqrt[5]{2}, \sqrt[5]{3}, \sqrt[5]{10} \), we get \(a + 7c = 89 \), \(2c = 28 \), \(b = d = 0 \), which is \(a = -9 \), \(b = 0 \), \(c = 14 \), \(d = 0 \).

4. (a) Prove that \(g(x) = x^4 + 1 \) is reducible over \(\mathbb{F}_3 \). (Hint: find \(h(x) | g(x) \))

 (b) Determine the factorization of \(f(x) = x^9 - x \in \mathbb{F}_3[x] \) into irreducible polynomials.

 (c) Determine the splitting field of \(f(x) \) and its degree over \(\mathbb{F}_3 \).