Before you start, please read the syllabus carefully.

1. Consider $\mathbb{Z}[^{\sqrt{-1}}]$. As a set, it contains all elements in the form of $a + b\sqrt{-1}$ where a and b are in \mathbb{Z}. The addition and multiplication is defined as the same addition and multiplication in complex numbers. Prove that $\mathbb{Z}[^{\sqrt{-1}}]$ is a commutative ring.

2. Prove that $\mathbb{Z}[^{\sqrt{-1}}]$ is an integral domain.

3. Given a surjective ring homomorphism $\phi : A \to B$ between two commutative rings.
 (a) Denote J to be an ideal of B. Prove that $\phi^{-1}(J) := \{x \in A \mid \phi(x) \in J\}$ is an ideal of A.
 (b) Prove that if every ideal of A is principal, then every ideal of B is principle.

4. Find all the ideals in the ring of
 (a) \mathbb{Z}
 (b) $F[x]$ where F is a field
 (c) \mathbb{Z}_p where p is a prime
 (d) \mathbb{Z}_{pq} where p and q are two different primes.
 (e) \mathbb{Z}_{p^2} where p is a prime.

5. Show that \mathbb{Z}_5 is a quotient ring of \mathbb{Z}_{10} (equivalently, this means that \mathbb{Z}_5 is isomorphic to a quotient ring of \mathbb{Z}_{10}).

6. Given R a commutative ring. Prove that $I \cdot J := \{ \sum_{1 \leq k \leq K} i_k \cdot j_k \mid i \in I, j \in J\}$ are still ideals of R where I and J are both ideals of R.

7. For the ring of integers \mathbb{Z}, denote $I = \langle m \rangle$ and $J = \langle n \rangle$. You have seen in previous exercises that $I + J$ and $I \cap J$ and $I \cdot J$ are all ideals for the same ring R. Also you have seen that all ideals of \mathbb{Z} are principle. Find the generator for the following ideal:
 (a) $I + J$
 (b) $I \cap J$
 (c) $I \cdot J$
 Bonus: Which ideal is bigger between $I \cap J$ and $I \cdot J$? Can you guess when $I \cap J = I \cdot J$ for the ring \mathbb{Z}?

8. Find all ring homomorphisms $\phi : \mathbb{Q}[x] \to \mathbb{Q}$.
9. Prove that $\phi_a : F[x] \rightarrow F$ by mapping $\phi_a(f(x)) = f(a)$ is a surjective ring homomorphism. Determine $\text{Ker}(\phi_a)$. Show that F is a quotient ring of $F[x]$.

10. Given $I = \langle x^2 + 5 \rangle$ an ideal of $R = F[x]$. Determine R/I as a set, i.e., determine all the equivalence classes mod I.