Office Hour: 11:00 – noon.
Starting from this Thursday.

Classification of Finite Fields (fields with finitely many elements)

Claim 0:
If a field F contains finitely many elements, then
\[\text{char}(F) < \infty. \]
(Recall $\text{char}(F)$ is the smallest positive integer $m > 0$ s.t.
\[1 + 1 + \cdots + 1 = 0 \in F \]

pf: Consider the set \(S = \{ 1, 2, 3, \ldots, m, \ldots \} \subseteq F \)
which only contains finitely many elements.
If $\text{char}(F) = 0$ (meaning $m \cdot 1 \neq 0$ for any $m \in \mathbb{Z}$),
then S will contains infinitely many elements. Contradiction.

Recall we showed before $\text{char}(F)$ must be a prime number.
\[n = \prod p_i^{y_i} \quad n \cdot 1 = 0 \quad \Rightarrow \quad \exists p \mid n \quad p \cdot 1 = 0 \]
since there is no zero-divisors in F.

Claim 1: If char\((F) = p \), \(|F| < \infty \), then \(|F| = p^n \) for some \(n \in \mathbb{Z}_+ \).

pf: If char\((F) = p \), then \(\exists \, 0, 1, \ldots, p-1 \in F \) is a subfield \(\mathbb{F}_p (\mathbb{Z}_p) \), so \(F \) is a field extension of \(\mathbb{F}_p \). So it is a vector space \(/F_p\), say with dim = \(n \). We know \(n < \infty \) because \(|F| < \infty \).

Therefore \(F \) contains \(p^n \) elements since any dimension \(n \) \(\mathbb{F}_p \) -vs contains \(p^n \) elements.

Q: Any example of fields \(F \) s.t.
1) char\((F) < \infty \)
2) \(|F| = \infty \).

e.g. \(F = \mathbb{F}_p (t) = \{ \frac{f(t)}{g(t)} \mid f(t), g(t) \in \mathbb{F}_p [t] \} \)

\(t, -, \times, \div \) is a field.

\(F \) is still a field extension of \(\mathbb{F}_p \), therefore char\((F) = p \), \(t, t^2, t^3, \ldots \) are all different elements in \(F \). So \(|F| = \infty \).
Our main goal is to show the following theorem.

Thm. There exists a unique finite field \(F \) s.t.

\[|F| = p^n = q \quad \text{for every } p \text{ and every } n. \]

Pf: Existence : (It is clear \(\text{char}(F) = p \). so \(F \) must
a field extension of \(\mathbb{F}_p \).)

Let \(f(x) = x^9 - x \in \mathbb{F}_p[x] \). Let \(K \) be the
splitting field of \(f(x) \) over \(\mathbb{F}_p \).

(Recall splitting field of \(f(x) \in F[x] \) is the smallest field extension \(F \subseteq K \) s.t. \(f(x) = \prod_{i} (x - x_i) \in K[x], \)
or equivalently, the smallest field extension containing all roots of \(f(x) \).)

\[K = \overline{\mathbb{F}_p}(f) \]

meaning splitting field of \(f(x) \).

\[\overline{\mathbb{F}_p} \]

Claim 2: \(S = \{ x \in K | f(x) = 0 \} \)

Then \(\overline{\mathbb{F}_p} \leq S \leq K \) is a subfield of \(K \).

Pf: If \(x_1^2 = x_1, \quad x_1^2 = x_2 \), then

1) \((x_1 + x_2)^2 = x_1 + x_2 \) \(\leftarrow \) use \(p \mid \text{combinatoric number} \)

2) \(\left(\frac{1}{x_1} \right)^2 = \frac{1}{x_1} \)

3) \(x_1 \cdot x_2 \)

\[\overline{\mathbb{F}_p} \leq S \quad \text{since } x \in \overline{\mathbb{F}_p} \text{ satisfy } \]

\[x^{p - 1} = 1 \]
Lemma: Given a finite group \(G \) with \(|G| = n \). Then \(g^n = e \) for all \(g \in G \). (We will prove this in next class.)

Notice \(\mathbb{F}_p \setminus \{0\} = \mathbb{F}_p^\times \) is an abelian group with \(|\mathbb{F}_p^\times| = p-1 \). So by the lemma, \(\alpha^{p-1} = 1 \) \(\forall \alpha \in \mathbb{F}_p^\times \)

so \(\alpha^p = \alpha \), thus \(\alpha^q = (\alpha^p)^{\frac{p}{q}} = \alpha \). \(\square \)

So \(S \) contains all roots of \(f(x) \). Then \(S = K \) by definition of splitting fields.

To show \(|S| = p^n \) it suffices to show that all roots are different.

Claim 3: \(f(x) \) has distinct roots.
pf: Suppose \(f(x) \) has repeated roots. \(f(x) = \prod (x-\alpha_i) \)

\[f(x) = (x-\alpha)^2 \cdot g(x) \quad \text{where} \quad g(x) = \prod \frac{1}{x-\alpha_i} \]

then \(f'(x) = 2(x-\alpha) \cdot g(x) + (x-\alpha)^2 \cdot g(x) \).

where \(f'(x) \) is defined to be \(\sum a_n \cdot n x^{n-1} \) for \(\sum a_n x^n \).

Then \(f'(\alpha) = 0 \) but \(f'(x) = q \cdot x^{2-1} - 1 = -1 \) since \(p \div q \). \(\square \) (Remark: product rule also holds with this new definition of \(f'(x) \))

Then we know \(|S| = p^n \). So we finish the existence.
Uniqueness: If F contains p^n elements. Consider its multiplicative group $F^* = F \setminus \{0\}$. \[|F^*| = p^n - 1\] elements. So, by the Lemma before, $\alpha^{p^n - 1} = 1$ for all $\alpha \in F$. So $\alpha^{p^n} = \alpha$. So all elements of F are roots of $f(x) = x^{p^n} - x$, so $F \subseteq K$ the splitting field of $f(x)$, we know $|K| = p^n$ because in last part $K = S$ has size p^n and F has size p^n, so $F = K$.

Q: Do we always get the splitting field for $f(x)$ by $F_p[x]/\langle f(x) \rangle$ for irreducible $f(x) \in F_p[x]$.
Ans. Yes. Requires a proof. (Left as an exercise).

Corollary. Finite fields with $q = p^n$ elements, denoted by \mathbb{F}_q, is the splitting field of $f(x) = x^2 - x$. Actually every element in \mathbb{F}_q is a root of $f(x)$.
Q: How to find a set of basis for \mathbb{F}_q as a
\[\dim_{\mathbb{F}_p} v.s.\] over \mathbb{F}_p?