Malle’s Conjecture for $S_n \times A$ for $n = 3, 4, 5$

Jiuya Wang

November 20, 2018

Abstract

We propose a framework to prove Malle’s conjecture for the compositum of two number fields based on proven results of Malle’s conjecture and good uniformity estimates. Using this method we prove Malle’s conjecture for $S_n \times A$ over any number field k for $n = 3$ with A an abelian group of order relatively prime to 2, for $n = 4$ with A an abelian group of order relatively prime to 6 and for $n = 5$ with A an abelian group of order relatively prime to 30. As a consequence, we prove that Malle’s conjecture is true for $C_3 \wr C_2$ in its S_9 representation, whereas its S_6 representation is the first counter example of Malle’s conjecture given by Klüners. We also prove new local uniformity results for ramified S_5 quintic extensions over arbitrary number fields by adapting Bhargava’s geometric sieve and averaging over fundamental domains of the parametrization space.

Key words. Malle’s conjecture, compositum, uniformity estimate, counter example, density of discriminants

1 Introduction

There are only finitely many number fields with bounded discriminant, therefore it makes sense to ask how many there are. Malle’s conjecture aims to answer the asymptotic question for number fields with prescribed Galois group. Let k be a number field and K/k be a degree n extension with Galois closure \tilde{K}/k, we define $\text{Gal}(K/k)$ to be $\text{Gal}(\tilde{K}/k)$ as a transitive permutation subgroup of S_n where the permutation action is defined by its action on the n embeddings of K into \bar{k}. Let $N_k(G,X)$ be the number of isomorphism classes of extensions of k with Galois group isomorphic to G as a permutation subgroup of S_n and absolute discriminant bounded by X. Malle’s conjecture states that $N_k(G,X) \sim CX^{1/a(G)} \ln^{b(k,G)-1} X$ where $a(G)$ depends on the permutation representation of G and $b(k,G)$ depends on both the permutation representation and the base field k. See section 2.3 for explanations on the constants.

Malle’s conjecture has been proven for abelian extensions over \mathbb{Q} [Mak85] and over arbitrary bases [Wri89]. However, for non-abelian groups, there are only a few cases known. The first case is S_3 cubic fields proved by Davenport and Heilbronn [DH71] over \mathbb{Q} and later proved by Datskovsky and Wright [DW88] over any k. Bhargava and Wood [BW08] and Belabas and Fouvry [BF10] independently proved the conjecture for S_3 sextic fields. The cases of S_4 quartic fields [Bha05] and S_5 quintic fields [Bha10] over \mathbb{Q} are also proved by Bhargava. In [BSW17], these cases are generalized to arbitrary k by Bhargava, Shankar and Wang. The case of D_4 quartic fields over \mathbb{Q} is proved by Cohen, Díaz y Díaz and Olivier [CyDO02]. It was generalized by Klüners to groups in the form of $C_2 \wr H$ [Klu12] under mild conditions on H.

The main result of this paper is to prove Malle’s conjecture for $S_n \times A$ in its $S_n[A]$ representation for $n = 3, 4, 5$ with certain families of abelian groups A.

1
Theorem 1.1. Let A be an abelian group and let k be any number field. Then there exists C such that the asymptotic distribution of $S_n \times A$-number fields over k by absolute discriminant is

$$N_k(S_n \times A, X) \sim CX^{1/|A|}$$

in the following cases:

1. $n = 3$, if $2 \mid |A|$;
2. $n = 4$, if $2, 3 \mid |A|$;
3. $n = 5$, if $2, 3, 5 \mid |A|$.

Please see section 2.3 for the explanation that this agrees with Malle’s conjecture. We can write out the constant C explicitly given the generating series of A-extensions by discriminant, see e.g. [Makk85, Woot10, Wrig89] for where these generating series are explicitly given. The constant C could be written as a finite sum of Euler products when the generating series of A-extensions is a finite sum of Euler products.

For example, if we count all homomorphisms $G \rightarrow S_3 \times C_3$ that surject onto the S_3 factor, the asymptotic count of these homomorphisms by discriminant is

$$2 \prod_p c_p X^{1/3}$$

(1.1)

where $c_p = (1 + p^{-1} + 5p^{-2} + 2p^{-7/3})(1 - p^{-1})$ for $p \equiv 1$ mod 3 and $c_p = (1 + p^{-1} + p^{-2})(1 - p^{-1})$ for $p \equiv 2$ mod 3. For $p = 3$, we use the database of local fields [LMFT13] to compute that $c_3 = 3058.3^{-5} + 4.3^{4/3} \approx 29.8914$. If we count the actual number of isomorphism classes of $S_3 \times C_3$ extensions, i.e., all surjections $G \rightarrow S_3 \times C_3$ up to an automorphism, the asymptotic constant is naturally a difference of two Euler products. One is given above divided by $|\text{Aut}(S_3 \times C_3)| = 12$ and the other one comes from the subtraction of the S_3 extensions.

However, Malle’s conjecture has been shown to be not generally correct. Klüners [Kl05a] shows that the conjecture does not hold for $C_3 \wr C_2$ number fields over \mathbb{Q} in its S_6 representation, where Malle’s conjecture predicts a smaller power for $\ln X$ in the main term. See [Kl05a] and [Tur08] for suggestions on how to fix the conjecture. And by relaxing the precise description of the power for $\ln X$, weak Malle’s conjecture states that for arbitrary given small $\epsilon > 0$, the distribution satisfies $C_1X^{1/|a(G)|} \leq N_k(G, X) \leq C_2(\epsilon)X^{1/|a(G)|+\epsilon}$ when X is large enough. Klüners and Malle proved weak Malle’s conjecture for all nilpotent groups [KM04].

Notice that for Klüners’ counter example, $C_3 \wr C_2 \simeq S_3 \times C_3$, we have the following corollary.

Corollary 1.2. Malle’s conjecture holds for $C_3 \wr C_2$ in its S_6 representation over any number field k.

Counting non-Galois number fields could be considered as counting Galois number fields by discriminant of certain subfields. A natural question thus will be: what kind of subfields provide the discriminant as an invariant by which the asymptotic estimate is as predicted by Malle.

Malle considers the compatibility of the conjecture under taking compositum in his original paper [Mal02] and estimates both the lower bound and upper bound of asymptotic distribution for compositum when the two Galois groups have no common quotient. Klüners also considered counting direct product in his thesis [Kl05b]. Assuming some condition on counting H extensions which is known when $H = S_n$ with degree $n = 3, 4, 5$, he proves an upper bound of $N(G, X)$ in the order of $O_\epsilon(X^{1/|a(G)|+\epsilon})$ for $G = C_1 \times H$ where C_1 is a prime order cyclic group. By working
out a product argument, we show a better lower bound for general direct product, see Corol-

lary 3.3. And by analyzing the behavior of the discriminant carefully and applying good local
uniformity results on ramified extensions, we show a better upper bound for our cases $S_n \times A$

, see Theorem 1.1. It gives the same order of main term and actually matches Malle’s prediction.
The local uniformity results will be key input for our proof of Theorem 1.1. For example, we

prove the following new local uniformity estimates for ramified S_5 quintic extensions.

Theorem 1.3. The number of S_5 quintic extensions over a number field K which are totally

ramified at a product of finite places $q = \prod p_i$ is:

$$N_q(S_5, X) = O_{\epsilon}(\frac{X}{|q|^{4/15-\epsilon}}) + O_{\epsilon}(X^{(37+1/3)/40}|q|^\epsilon),$$

for any square free integral ideal q of K. The implied constant is independent of q, and only

depends on K and ϵ. In particular,

$$N_q(S_5, X) = O_{\epsilon}(\frac{X}{|q|^{4/15-\epsilon}}).$$

The proof combines an adaptation of Bhargava’s geometric sieve in [Bha14] and the aver-

aging technique first introduced by Bhargava in [Bha05]. The averaging technique is especially

useful for counting low rank ($n = 3, 4, 5$) irreducible orders with a power saving error. Aside

from counting the total number of irreducible orders, it could also be used to count the number

of irreducible orders satisfying certain local conditions. In this paper we apply the averaging

technique to count the number of irreducible orders that are ramified at finitely many places.

As an input to apply the averaging technique, we will need to count the number of irreducible

ramified lattice points inside an inhomogeneous expanding compact region. We use the key ob-

servation in [Bha14] that ramified lattice points are rational points of a certain closed subscheme

and the lattice counting question could be therefore translated to a geometric setting. In order

to prove Theorem 1.3 we first adapt Bhargava’s geometric sieve to give an upper bound on

the number of integral points that are within an expanding compact region and are O_{K/qO_K}-

rational points of a closed scheme Y where q is a square free ideal. See Theorem 4.3, 4.4, 4.6 for

explicit statements with an increasing complexity. This generalizes and improves on a corollary

of Theorem 3.3 in [Bha14] which gives an upper bound on the number of integral points that are

ramified at a single prime p. We generalize the number of closed schemes from one to finitely

many, the modulus from a prime ideal to a square free ideal, and the base field from \mathbb{Q} to a

general number field K. We slightly improve on the power saving error. The observation of this

geometric structure in [Bha14] enables us to get a power saving error that is uniform in q and are

reserved by the averaging technique, which is crucial to our the proof. The explicit computation

for the averaging technique is carried out in the proof of Theorem 1.3.

This paper is organized as follows. In section 2 we analyze the discriminant of a compositum

in terms of each individual discriminant and gives the algorithm to compute the discriminant

of the compositum precisely in general. Then by applying the algorithm, we compute the dis-

criminant explicitly for the case $S_n \times A$. Finally we check that Theorem 1.1 agrees with Malle’s

prediction. In section 3 we prove a product argument in two different cases. In section 4 we

include and prove some necessary local uniformity results. For S_n extensions with $n = 3, 4$, the

local uniformity estimates mainly follow from [DW88] and [BSW17] by class field theory. For

S_5 extensions, we adapt Bhargava’s geometric sieve and then apply averaging technique. For

all abelian extensions we prove perfect uniformity estimates by class field theory. In section 5,
in order to prove our main theorem, Theorem 1.1 we first count by a family of new invariants,
which are approximations of the discriminant. With the input of uniformity results we have developed in section 4, we show that counting functions of this family of invariants will finally converge to the counting function of the discriminant.

Notations
Throughout the paper, unless stated otherwise, we will use k to denote a fixed number field as the base field. In this list, we will assume K/k is a finite extension.

p: a finite place in base field k

K_p: the completion of K with respect to the valuation at p where $p \in O_K$ is a prime ideal

$(K)_p$: the local étale algebra $K \otimes_k k_p = \bigoplus_{p | p} K_p$ where the sum is over ideals p of K above p

$| \cdot |$: absolute norm $N_{k/\mathbb{Q}}$

$\text{disc}(K/k)$: relative discriminant ideal in base field k

$\text{Disc}_q(K/k)$: an ideal $p^{\text{val}_p(\text{disc}(K/k))}$ for a prime ideal p of k

$\text{Disc}(K)$: absolute norm of $\text{disc}(K/k)$ to \mathbb{Q}

$\text{Disc}_p(K)$: absolute norm of $\text{disc}_p(K/k)$

\hat{K}: Galois closure of K over base field k

(g): the subgroup of G generated by $g \in G$

$\text{ind}(g)$: $n - |\{\text{orbits}\}$ for a permutation element $g \in S_n$, we define it to be index of g

$\text{ind}(G)$: $\min_{g \in G} \text{ind}(g)$ for a permutation group $G \subset S_n$, we define it to be index of G

G_{k_p}: the Galois group of the separable closure k_p over k_p

G_k: the Galois group of the separable closure k over k

$N_k(G, X)$: the number of isomorphism classes of G extensions over k with Disc bounded by X

$f(x) \sim g(x)$: $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$

Discriminant of Compositum

Throughout this section, we will fix the number field k as the base field, denote by K/k and L/k two extensions over k such that $\hat{K} \cap \hat{L} = k$ with $m = [K : k]$ and $n = [L : k]$. Therefore the Galois groups can be given the permutation structure $\text{Gal}(K/k) \subset S_m$ and $\text{Gal}(L/k) \subset S_n$. Under the condition that $\hat{K} \cap \hat{L} = k$, we have $\text{Gal}(KL/k) \simeq \text{Gal}(K/k) \times \text{Gal}(L/k) \subset S_{mn}$, where the isomorphism is a product of the restrictions to K and L.

2.1 General Bound

In this section, we will give a general upper bound on $\text{Disc}(KL)$ in terms of $\text{Disc}(K)$ and $\text{Disc}(L)$ when \hat{K} and \hat{L} have trivial intersection. Notice that given $\hat{K} \cap \hat{L} = k$, we have $[KL : k] = [K : k][L : k]$. It suffices to prove the following theorem.

Theorem 2.1. Let K/k and L/k be extensions over k with $[KL : k] = [K : k][L : k]$, then $\text{Disc}(KL) \leq \text{Disc}(K)^n \text{Disc}(L)^m$, where $n = [L : k]$ and $m = [K : k]$.

Proof. If $k = \mathbb{Q}$, then the rings of integers O_K and O_L are free \mathbb{Z}-modules with rank m and n, therefore we could find an integral basis $\{e_i \mid 1 \leq i \leq m\}$ and $\{d_j \mid 1 \leq j \leq n\}$ for O_K and O_L. Then $\{e_i d_j \mid 1 \leq i \leq m, 1 \leq j \leq n\}$ will be an integral basis for O_{KL} as a free \mathbb{Z}-module with rank mn. By using the definition of discriminant to be the determinant of trace form, we can compute and see that $\text{Disc}(O_{KL}) = \text{Disc}(K)^n \text{Disc}(L)^m$. Since $O_{KL} \subset O_{KL}$, we get an upper bound for $\text{Disc}(O_{KL})$. Over an arbitrary number field k, the ring of integers O_K may not admit an integral basis, i.e., may not be a free O_{KL}-module, but it is locally free.
Therefore we could look at the discriminant ideal \(\text{disc}(K/k) \) at each place \(p \) of \(O_k \). Given a prime ideal \(p \), let \(S \) be the subset \(O_k \setminus O_k^p \) of \(O_k \) that is closed under multiplication. To understand the \(p \)-part of the relative discriminant, we have \(\text{disc}(S^{-1}O_K/S^{-1}O_k) = S^{-1}\text{disc}(O_K/O_k) \) as an \(S^{-1}O_k \)-module, see e.g. Chapter II (2.9) [Nie99]. Now \(S^{-1}O_k \) is a discrete valuation ring with the unique maximal ideal \(S^{-1}p \), and \(S^{-1}O_K \) is a finitely generated \(S^{-1}O_k \)-module, therefore admits an integral basis. Similarly for \(S^{-1}O_L \). Notice that by assumption \(S^{-1}O_K \) intersects trivially with \(S^{-1}O_L \), and again by working with the integral basis like before, but over \(S^{-1}O_k \), we get that \(S^{-1}\text{disc}(O_KO_L/O_k) = \text{disc}(S^{-1}O_K \cdot S^{-1}O_L) = \text{disc}(S^{-1}O_K)^n \text{disc}(S^{-1}O_L)^m \).

And \(S^{-1}\text{disc}(K/k) \) as an ideal of \(S^{-1}O_k \) has the same valuation at \(S^{-1}p \) with the valuation of \(\text{disc}(K/k) \) at \(p \). So the valuation of \(\text{disc}(O_{KL}/O_k) \) at \(p \) is at most the valuation of \(\text{disc}(O_K)^n \text{disc}(O_L)^m \) for every \(p \). By taking the absolute norm, we get the theorem.

2.2 Tamely Ramified Places

In this section, we will give a precise description of \(\text{disc}_p(KL) \) in terms of \(\text{disc}_p(K) \) and \(\text{disc}_p(L) \) at a prime \(p \) where both \(K \) and \(L \) are tamely ramified. We will always assume \(\hat{K} \cap \hat{L} = k \). This enables us to compute explicitly \(\text{disc}_p(KL) \) when \(KL/k \) is tamely ramified at \(p \), thus determining \(\text{Disc}(KL/k) \) completely in such situation.

We recall some standard properties of tamely ramified extensions. Firstly, given a general field extension \(M/k \) with degree \(n \) that is tamely ramified at a prime \(p \) in \(k \), the inertia group at \(p \) is always a cyclic group. Therefore the inertia group could be described by a generator. Notice that the inertia group at \(p \) can only be defined up to conjugacy classes, so the generator can only be specified up to conjugacy subgroups. Secondly, the inertia group at \(p \) for a tamely ramified extension \(M/k \) completely determines \(\text{disc}_p(M/k) \). Suppose the inertia group at \(p \) is the subgroup generated by \(g_M \), i.e. \(I_p = (g_M) \), then recall the definition of index \(\text{ind}(g) := n - \sharp\{\text{orbits of } g\} \) of \(g \in G \subset S_n \), we have

\[
\text{ind}(g_M) = n - \sharp\{\text{orbits of } g_M\} = \sum (e_i - 1)f_i,
\]

is exactly the exponent of \(p \) in \(\text{disc}(M/k) \), equivalently

\[
\text{disc}_p(M/k) = p^{\text{ind}(g_M)}.
\]

Here by the number of orbits we mean the number of cycles of \(g \) as a permutation element inside \(S_n \). So we can determine \(\text{disc}_p(M/k) \) by just looking at the cycle structure of \(g \in S_n \). For example, if the inertia group \(I_p = \langle (12)(34) \rangle \subset S_4 \) for a \(S_4 \) quartic extension \(M/k \), then \(\text{Disc}_p(M/k) = p^2 \) since \(\text{ind}(\langle (12)(34) \rangle) = 4 - 2 = 2 \).

Now we are ready to consider \(\text{disc}_p(KL) \). Recall that if \(\hat{K} \cap \hat{L} = k \), then \(\text{Gal}(KL/k) \cong \text{Gal}(K/k) \times \text{Gal}(L/k) \subset S_{mn} \). Suppose \(\hat{K} \) and \(\hat{L} \) are both tamely ramified at \(p \) with inertia groups \(I_K = \langle g_1 \rangle \subset \text{Gal}(K/k) \subset S_m \) for \(K/k \) and \(I_L = \langle g_2 \rangle \subset \text{Gal}(L/k) \subset S_n \) for \(L/k \). Then \(KL/k \) is also tamely ramified since tamely ramified extensions are closed under taking compositum. An inertia group at \(p \) for \(KL/k \) is \(I = \langle (g_1, g_2) \rangle \in \text{Gal}(K/k) \times \text{Gal}(L/k) \subset S_{mn} \) because the inertia group for a normal sub-extension is naturally the image of the inertia group under the quotient map of the Galois groups.

Theorem 2.2. Given \(K/k \) and \(L/k \) with \(\hat{K} \cap \hat{L} = k \) that are both tamely ramified at \(p \). Let \(e_K \) and \(e_L \) be the ramification indices of \(K \) and \(L \) at \(p \) with \((e_K, e_L) = 1 \). Then denote a generator of an inertia group of \(K, L \) and \(KL \) at \(p \) by \(g_K, g_L \) and \(g_{KL} \), we have

\[
\text{ind}(g_{KL}) = \text{ind}(g_K) \cdot n + \text{ind}(g_L) \cdot m - \text{ind}(g_K) \cdot \text{ind}(g_L)
\]
where $m = [K : k]$ and $n = [L : k]$.

Proof. Suppose $g_K \in \text{Gal}(K/k) \subset S_m$ is a product of disjoint cycles $\prod_i c_k$, then e_K will be the least common multiple of $|c_k|$, the length of the cycle c_k, for all k. Similarly, say g_L is a product of disjoint cycles $\prod_i d_i$. Now consider the image of $g_{KL} = (g_K, g_L)$ as embedded to S_{mn}, the permutation action is naturally defined to be mapping $a_{i,j}$ to $a_{g_K(i), g_K(j)}$ for $1 \leq i \leq m$, $1 \leq j \leq n$. If $(e_K, e_L) = 1$, then for any pair of cycles c_k and d_i, we have $(|c_k|, |d_i|) = 1$ and therefore (c_k, d_i) forms a single cycle of length $|c_k||d_i|$ in S_{mn}. So the number of orbits in g_{KL} is the product of the number of orbits in g_K and g_L. Therefore $\text{ind}(g_{KL}) = mn - (m - \text{ind}(g_K))(n - \text{ind}(g_L)) = \text{ind}(g_K) \cdot n + \text{ind}(g_L) \cdot m - \text{ind}(g_K) \cdot \text{ind}(g_L)$. \hfill \Box

This gives a nice description of $\text{disc}_{p}(KL)$ in terms of $\text{disc}_{p}(K)$ and $\text{disc}_{p}(L)$ that only depends on the ramification indices e_K and e_L, and is independent of the cycle structure of g_K and g_L when the ramification indices are relatively prime. In general, to compute $\text{ind}(g_{KL})$ requires more knowledge on the cycle type of g_K and g_L.

Theorem 2.3. Given K/k and L/k with $K \cap L = k$ that are both tamely ramified at p. Let the generator of an inertia group of K at p be $g_K = \prod_k c_k$, and the generator of an inertia group of L at p be $g_L = \prod_i d_i$. Then the generator g_{KL} of an inertia group of KL at p satisfies

$$\text{ind}(g_{KL}) = mn - \sum_{k,l} \gcd(|c_k|, |d_l|),$$

where $m = [K : k]$ and $n = [L : k]$.

Proof. In general, the product of cycles (c_k, d_i) in S_{mn} is no longer a single orbit. Instead, it splits into $\gcd(|c_k|, |d_l|)$ many orbits. So by taking the summation over all pairs of cycles, we have $\text{ind}(g_{KL}) = \sum_{k,l}(|c_k||d_l| - \gcd(|c_k|, |d_l|)) = mn - \sum_{k,l} \gcd(|c_k|, |d_l|)$. \hfill \Box

2.3 Wildly Ramified Places

In this section, we will give a general theorem that $\text{disc}_{p}(KL)$ could be completely determined by the local étale algebras $(K)_p$ and $(L)_p$. This will hold for every prime p in k. Although we do not give an explicit way to compute the number, it will be good enough for our application.

Theorem 2.4. Given K/k and L/k with $K \cap L = k$. The local étale algebra of the compositum $(KL)_p$ at a prime p could be determined by the local étale algebras $(K)_p$ and $(L)_p$. In particular, the relative discriminant ideal $\text{disc}_{p}(KL)$ as an invariant of $(KL)_p$ could be determined by $(K)_p$ and $(L)_p$.

Proof. There is a bijection between degree n étale extension over a field F and continuous morphisms from $\text{Gal}(\bar{F}/F)$ to S_n up to conjugation inside S_n (here \bar{F} is the separable closure of F), see e.g. Proposition of 6.1 in [Woo16]. Therefore we can find the following maps

$$\rho_{K,p} : G_{k_p} \to S_n, \quad \rho_{L,p} : G_{k_p} \to S_m,$$

that correspond to $(K)_p$ and $(L)_p$. Similarly for K and L, we get

$$\rho_K : G_k \to S_n, \quad \rho_L : G_k \to S_m.$$

Moreover, the map $\rho_{K,p}$ could be taken as the composition of $G_{k_p} \hookrightarrow G_k$ and ρ_K.

6
Given $\bar{K} \cap \bar{L} = k$, we get a representative of the map corresponding to KL

$$\rho_K \times \rho_L : G_k \to S_n \times S_m \subset S_{mn}.$$

The local map corresponding to $(KL)_p$ is therefore the composition of $G_{k_p} \to G_k$ and $\rho_K \times \rho_L$, which is exactly $\rho_{K_p} \times \rho_{L_p}$ and is completely determined by $(K)_p$ and $(L)_p$. By finding a representative of maps $\rho_{KL,p} : G_{k_p} \to S_{mn}$ corresponding to $(KL)_p$, we completely determine the structure $(KL)_p$ from $(K)_p$ and $(L)_p$. If $(KL)_p = \oplus_{p|p} KL_p$ where p are primes in KL, then by definition the discriminant of the local étale algebra $\text{disc}((KL)_p/k_p) = \prod_{p|p} \text{disc}(KL_p/k_p) = \text{disc}_p(KL/k)$, so $\text{disc}_p(KL/k)$ is an invariant of $(KL)_p$.

2.4 Discriminant for $S_n \times A$

In this section, we will apply the theorems developed in section 2.2 to compute explicitly $\text{disc}_p(KL)$ for an S_n ($n = 3, 4, 5$) degree n extension K/k and an odd abelian A extension L with $K \cap L = k$ at tamely ramified p. Firstly, in order to demonstrate how Theorem 2.2 and 2.3 can be used to carry out such computations, we give an explicit computation for the example of $S_3 \times C_{l^k}$ extensions with l^k a prime power. Secondly, we will use this approach to prove Lemma 2.5, 2.6 and 2.7, which compute $\text{disc}_p(KL)$ for all cases of $S_n \times A$ extensions with $n = 3, 4, 5$ and A an odd order abelian group. The key results from this section that will be crucial for the proof of Theorem 1.1 are the statements of Lemma 2.5, 2.6 and 2.7, which essentially give lower bounds on $\text{disc}_p(KL)$ in terms of $\text{disc}_p(K)$ and $\text{disc}_p(L)$. See the end of this section for more explanation on Lemma 2.5, 2.6 and 2.7.

Firstly, in order to demonstrate our approach to the computation of the discriminant, we consider the special example of $S_3 \times A$ where $A = C_{l^k}$ is cyclic with odd prime power order l^k. Possible tame inertia generators in S_3 are (12) and (123). For $A \subset S_{|A|}$, possible generators are of the form $g = (123...l^k)$ or powers of g, i.e., a product of l' cycles where each cycle has length l^{k-r}. So among all $g \in A$, the index $\text{ind}(g)$ is minimal when g is product of l^{k-r} cycles of length l. Therefore we see that $\text{ind}(A) = l^k - l^{k-1}$, and $\frac{|A|}{\text{ind}(A)} = \frac{1}{l-1}$.

If $l \neq 3$, then the ramification index e_L for L is always relatively prime to 2 and 3, so we can apply Theorem 2.2 to get Table 1. The first column is the conjugacy class of the inertia generator $g_K \in S_3$ of K at p, and the second column is the index $\text{ind}(g_L) = \text{val}_p(\text{disc}(L/k))$ of the inertia generator $g_L \in A \subset S_{|A|}$ of L at p. The last column is $\text{val}_p(\text{disc}(KL/k))$ when K and L are specified to have property in previous columns at p.

<table>
<thead>
<tr>
<th>S_3</th>
<th>C_{l^k}</th>
<th>$S_3 \times C_{l^k}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(12)</td>
<td>$l^k - l^r$</td>
<td>$3l^k - 2l^r$</td>
</tr>
<tr>
<td>(123)</td>
<td>$l^k - l^r$</td>
<td>$3l^k - l^r$</td>
</tr>
</tbody>
</table>

Table 1: Table of $\text{disc}_p(KL/k)$ for $S_3 \times C_{l^k}$, $l \neq 3$

If $l = 3$, we need to be more careful and apply Theorem 2.3 to get Table 2.

<table>
<thead>
<tr>
<th>S_3</th>
<th>C_{l^k}</th>
<th>$S_3 \times C_{l^k}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(12)</td>
<td>$l^k - l^r$</td>
<td>$3l^k - 2l^r$</td>
</tr>
<tr>
<td>(123)</td>
<td>$l^k - l^r$</td>
<td>$3l^k - 3l^r$</td>
</tr>
</tbody>
</table>

Table 2: Table of $\text{disc}_p(KL/k)$ for $S_3 \times C_{l^k}$, $l = 3$
If one of the generators g_K and g_L is identity at p, then by Theorem 2.2 we get that $\text{disc}_p(KL) = \text{disc}_p(K^n) \text{disc}_p(L)^m$.

Now we are going to prove the general case of $S_n \times A$ with $n = 3, 4, 5$ and A an odd order abelian group. The idea is to consider $A = \prod_i A_i$ as a direct product of Sylow subgroups A_i over all prime number l. To simplify the notation, for $g \in S_n$ and $c \in A$, we will denote the index of $(g, c) \in S_n \times A \subset S_n[A]$ by $\text{ind}(g, c)$.

Lemma 2.5. Let A be an abelian group of odd order m and $(12), (13)$ be elements in S_3. Then for all $c \in A$, the index $\text{ind}((12), c)/m > 2$ and $\text{ind}((123), c)/m > 1$.

Proof. One can compute that for any abelian group A, the quotient $\frac{|A|}{\text{ind}(A)}$ equals to $\frac{|A|}{p-1}$ where p is the minimal prime divisor of $|A|$. This can be seen by combining the Sylow subgroups A_i of A inductively. Notice that if $p \neq 2$, then $\frac{2}{p-1} < 2$. Now by Theorem 2.2 we compute $\text{ind}((12), c) = |A| + 3 \cdot \text{ind}(c) - \text{ind}(c) = m + 2 \cdot \text{ind}(c) \geq m + 2 \cdot \text{ind}(A) > 2m$ since $\frac{|A|}{\text{ind}(A)} < 2$.

For $\text{ind}((123), c)$, if $3 \mid |A|$, then $\text{ind}((123), c) = 2m + 3 \cdot \text{ind}(c) - \text{ind}(c) = 2m + \text{ind}(c) > m$. If $3 \nmid |A|$, we separate 3-Sylow subgroup A_3 of A to compute $\text{ind}((123), c) = \text{ind}((123), c_3) = \text{ind}((123), c_3, e_{\geq 3})$ where $(123, c_3)$ is an element in $S_3 \times A_3 \subset S_3[A]$. Say $\text{ind}((123), c_3) = i$, then since $S_3 \times A_3$ is relatively prime to $|A|$, we could apply Theorem 2.2 first

$$\text{ind}((123), c_3, e_{\geq 3}) = i|A_3| + (3|A_3| - i) \cdot \text{ind}(c_{\geq 3}).$$

Therefore among all possible $c \in A$, the minimal value of $\text{ind}((123), c)$ is obtained when both i and $\text{ind}(c_{\geq 3})$ are smallest possible. The smallest possible $\text{ind}(c_{\geq 3})$ is $\text{ind}(A_{\geq 3})$ by definition. The smallest $i = \text{ind}((123), c_3)$ is $\text{ind}((123), c) = 2|A_3|$. Therefore, if $A = A_3$, then $2|A_3|/m = 2 > 1$. If $A_{\geq 3}$ is non-trivial, then by (2.1), the index $\text{ind}((123), c) \geq 2m + |A_3| \cdot \text{ind}(A_{\geq 3}) > m$.

Lemma 2.6. Let A be an abelian group with $2, 3 \nmid |A| = m$ and let $(12), (123), (1234), (12)(34)$ be elements in S_4. Then for all $c \in A$, we have

$$\text{ind}((12), c)/m > 2, \quad \text{ind}((123)(34), c)/m > 1, \quad \text{ind}((123), c)/m > 3, \quad \text{ind}((1234), c)/m > 2.$$

Proof. We can apply Theorem 2.2 since $2, 3 \nmid |A|$. Then $\text{ind}((12), c) = |A| + 3 \cdot \text{ind}(c) \geq m + 3 \cdot \text{ind}(A) > 2m$, and $\text{ind}((123)(34), c) = m + 2 \cdot \text{ind}(c) > m$, and $\text{ind}((1234), c) = 3m + \text{ind}(c) > 2m$, and $\text{ind}((123), c) = 2m + 2 \cdot \text{ind}(c) \geq 2m + 2 \cdot \text{ind}(A) \geq 2m + 2 \cdot \frac{1}{2}m > 3m$.

Lemma 2.7. Let A be an abelian group with $2, 3, 5 \nmid |A| = m$. Then $\forall c \in A$ and $d \in S_5$, $\text{ind}(d, c)/m \geq 1 + \text{ind}(d) - 1/7$.

Proof. We can apply Theorem 2.2 since $2, 3 \nmid |A|$. Then $\text{ind}(d, c) = m \text{ind}(d) + 5 \text{ind}(c) - \text{ind}(d) \text{ind}(c) = p \text{ind}(d) + (5 - \text{ind}(d)) \text{ind}(c) = (m - \text{ind}(c)) \text{ind}(d) + 5 \text{ind}(c)$. So for a certain d, the value is smallest when $\text{ind}(c) = \text{ind}(A)$. When $\text{ind}(c) = \text{ind}(A)$, we have $\text{ind}(d, c)/m = \text{ind}(d) + (5 - \text{ind}(d)) \frac{\text{ind}(A)}{m - \text{ind}(d)} = \text{ind}(d) + (5 - \text{ind}(d)) \frac{\text{ind}(d)}{m - \text{ind}(d)} \geq (5 - 4) \frac{\text{ind}(d)}{7} = \frac{1}{7}$.

Remark 2.8. Lemma 2.3, 2.6 and 2.7 are one of the two sides of Lemma 5.7. We could compute $\text{disc}_p(KL/k)$ precisely in terms of $\text{disc}_p(K/k)$ and $\text{disc}_p(L/k)$ for all tamely ramified p. What is enough for the proof of the main theorem is a good lower bound on $\text{Disc}_p(KL)$. The other
side of Lemma 3.2 will be how good uniformity estimates we can prove, which is measured by the number \(r_d \) (see definition in the statement of Lemma 3.2). As long as the comparison between the two sides satisfy the inequality in Lemma 3.2 our main proof proceeds with no problem.

2.5 Malle’s Prediction for \(S_n \times A \)

In this section we compute the value of \(a(G) \) and \(b(k, G) \) for \(S_n \times A \). A similar discussion on \(a(G) \) when \(G \) is a direct product of two groups in general could be found in [Mal02]. We include the computation here for the convenience of the reader. Recall that given a permutation group \(G \subset S_n \), for each element \(g \in G \), we have the index \(\text{ind}(g) = n - \sharp \{ \text{orbits of } g \} \). We define \(a(G) \) to be the minimum value of \(\text{ind}(g) \) among all \(g \neq e \). The absolute Galois group \(G_k \) acts on the conjugacy classes of \(G \) via its action on the character table of \(G \). We define \(b(k, G) \) to be the number of orbits under \(G_k \) action within all conjugacy classes with minimal index.

Let \(G_i \subset S_n \) for \(i = 1, 2 \) be two permutation groups. Consider \(G = G_1 \times G_2 \subset S_{n_1 n_2} \). Suppose that \(\text{ind}(g_i) = \text{ind}(G_i) \) gives the minimal index, then for \(G \subset S_{n_1 n_2} \), the minimal index will either come from \(g_1 \times e \) or \(e \times g_2 \) since \(\text{ind}(g_1, e) \leq \text{ind}(g_1, g) \) for any \(g \in G_2 \) (and similarly the symmetric statement). One can compute \(\text{ind}(g_1 \times e) = n_2 \text{ind}(g_1) \). Therefore \(a(G) = \min \{ n_2 \cdot a(G_1), n_1 \cdot a(G_2) \} = n_1 n_2 \min \{ a(G_1), a(G_2) \} \).

If \(a(G_1) > a(G_2) \), then \(\{ g \times e \in G \mid \text{ind}(g) = a(G_1) \} \) contains exactly the elements with minimal index in \(G_1 \). Irreducible representations of \(G_1 \times G_2 \) are \(\rho_1 \otimes \rho_2 \) where \(\rho_i \) is one irreducible representation of \(G_i \) with character \(\chi_i \). The corresponding character for \(\rho_1 \otimes \rho_2 \) is \(\chi_1 \cdot \chi_2 \). Therefore the \(G_k \) action on \(g \times e \) has the same orbit as its action on \(g \). So \(b(k, G) = b(k, G_1) \).

Our case \(S_n \times A \subset S_{|A|} \) satisfies the above condition, therefore \(a(S_n \times A) = \min \{ \frac{1}{n}, \frac{p - 1}{m} \} = m \) where \(p \) is the smallest prime divisor of \(|A| = m \) and \(n = 3, 4, 5 \). And \(b(k, S_n \times A) = b(k, S_n) = 1 \).

3 Product Lemma

This section answers the question: given two distributions \(F_i \) for \(i = 1, 2 \), each describes the asymptotic distribution of some multi-set \(S_i \) containing a sequence of positive real numbers, i.e., let \(F_i(X) = \sharp \{ s \in S_i \mid s \leq X \} \), say \(F_i(X) \sim A_i X^{n_i}/\ln^{r_i} X \) where \(n_i > 0 \) and \(r_i \in \mathbb{Z}_{\geq 0} \), what is the product distribution \(P(X) = \sharp \{ (s_1, s_2) \mid s_i \in S_i, s_1 s_2 \leq X \} \).

We will split the discussion into two cases: if \(n_1 = n_2 \) we have Lemma 3.1 if \(n_1 \neq n_2 \) we apply Lemma 3.2 This question could be answered by more sophisticated tools in analytic number theory. For example by integration by parts we could deduce the analytic continuation for the generating series \(f_i(s) = \sum_{\mu \in B_i} \mu^{-s} \) from the distribution function \(F_i(X) \), and then by applying Tauberian theorem, see e.g. [MV81, Nar83], we could deduce the product distribution from the analytic continuation of the generating series \(f_1(s) \cdot f_2(s) \) for the product.

We could see the difference between the two cases from this point of view: if \(n_1 = n_2 = n \), then \(f_i(s) \) has the right most pole at \(s = n \) with roder \(r_1 + 1 \), therefore \(f_1(s) \cdot f_2(s) \) has the right most pole still at \(s = n \) but with order \(r_1 + r_2 + 2 \); if \(n_1 \neq n_2 \), say \(n_1 > n_2 \), then \(f_1(s) \cdot f_2(s) \) has the right most pole at \(s = n_1 \) with order \(r_1 + 1 \). In the following we include a proof for both cases via elementary methods for convenience of the readers. The exact statements in Lemma 3.1 and 3.2 are convenient for us to use since we do not need to assume any knowledge on the error of \(F_i(X) \). Moreover in Lemma 3.2 we determine an upper bound of the product distribution where the constant for the leading term is given with explicit dependence on the constants \(A_i \) for the leading term in \(F_i(X) \).
Lemma 3.1. Let $F_i(X) = \mathbb{P}\{s \in S_i \mid s \leq X\}$ be the asymptotic distribution of some multi-set S_i containing a sequence of positive real numbers that are greater or equal to 1 for $i = 1, 2$. Given $F_i(X) \sim A_i X^{r_i} \ln^{r_i} X$ where $n_i > 0$ and $r_i \in \mathbb{Z}_{\geq 0}$. If $n_1 = n_2 = n$, then
\[
P(X) \sim A_1 A_2 \frac{r_1! r_2!}{(r_1 + r_2 + 1)!} n X^{n} \ln^{r_1+r_2+1} X.
\]

Proof. We will prove this in two steps. We first explain why we could reduce to the case $n = 1$. For general n, it suffices to consider the modified multisets $S'_i = \{s^n \mid s \in S_i\}$. Then for the modified multisets S'_i we have the distribution function $F'_i(X) = F_i(X^{1/n}) \sim \frac{A_i}{n}, X \ln^{r_i} X$. If we determine the product distribution $P'(X)$ for $F'_i(X)$, then we get $P(X) = P'(X^n)$ since $s'_1 s'_2 \leq X^n$ if and only if $s_1 s_2 \leq X$.

Case 1: $F_1(X) = A_1 X \ln^{r_1} X + o(X \ln^{r_1} X)$, $F_2(X) = A_2 X \ln^{r_2} X + O(1)$.

Define a_μ to be the number of copies of μ in S_1, then
\[
F_1(X) = \sum_{\mu \leq X} a_\mu.
\]

To simplify, we denote the main term of $F_1(X)$ by $M_1(X)$, then
\[
P(X) = \sum_{s_1 \in S_1} F_2(X^{s_1}) = \sum_{\mu \leq X} a_\mu F_2(X^{\mu})
\]
\[
= \sum_{\mu \leq X} a_\mu M_2(X^{\mu}) + \sum_{\mu \leq X} a_\mu O(1).
\]

The last term is easily shown to be small,
\[
\sum_{\mu \leq X} a_\mu O(1) \leq O\left(\sum_{\mu \leq X} a_\mu\right) = O(X \ln^{r_1} X).
\]

For $X > 0$, define \underline{X} to be the largest real number less than or equal to X such that $a_\underline{X} > 0$. Therefore $F_1(X) = F_1(\underline{X})$, so $M_1(X) - M_1(\underline{X}) = o(X \ln^{r_1} X)$, therefore
\[
\lim_{X \to \infty} \frac{X \ln^{r_1} X}{X \ln^{r_1} \underline{X}} = 1,
\]
which implies that
\[
\lim_{X \to \infty} \frac{\underline{X}}{X} = 1.
\]

Now we apply summation by parts to compute the first sum
\[
\sum_{\mu \leq X} a_\mu M_2(X^{\mu}) = F_1(\underline{X}) M_2(1) - \int_{1}^{\underline{X}} F_1(t) \frac{d}{dt}(M_2(X^{1/t})) dt.
\]

If $r_2 = 0$, the boundary term $F_1(\underline{X}) M_2(1)$ is
\[
A_1 A_2 \underline{X} \ln^{r_1} X + o(X \ln^{r_1} X),
\]
otherwise it is 0. In either case it will be less than the expected main term that we are going to show. The derivative in the integral is
\[
\frac{d}{dt}(M_2(X^{1/t})) = -A_2 X \frac{1}{t^2} (\ln^{r_2} X + r_2 \ln^{r_2-1} X)
\]
\[
= X \sum_{0 \leq i \leq r_2} P_i(t) \ln^i X.
\]
So the integral is

$$\sum_{0 \leq i \leq r_2} X \ln^i X \int_X^1 F_i(t)P_i(t) \, dt. \tag{3.6}$$

We will show that we can replace the X in (3.6) with X. Indeed, from the first equality in (3.5), it suffices if we could show the following integral is negligible,

$$X \int_X^1 \frac{F_i(t)}{t} \cdot \ln^{r_2} \frac{X}{t} \, dt \leq X \frac{F_i(X)}{X} \ln^{r_2} \frac{X}{X} \int_X^1 \frac{1}{t} \, dt \leq X \ln^{r_1} X \ln^{r_2+1} \frac{X}{X} = o(X \ln^{r_1} X). \tag{3.7}$$

Similarly, we could plug in the second term in (3.5) and show it is also negligible. So from now on, we will consider (3.6) with X replaced with X.

It is standard in analysis that if f and g are positive and $\lim_{X \to \infty} \int_1^X f(t)g(t) \, dt = \infty$, then $\int_1^X o(f(t))g(t) \, dt = o(\int_1^X f(t)g(t) \, dt)$. Therefore we can replace $F_i(t)$ with $M_i(t)$ to estimate each integral in (3.6) up to a small error because $F_i(t) - M_i(t) = o(M_i(t))$. By explicit computation that we do not include here, one can check that in (3.6), each integral of $M_i(t)P_i(t)$ together with $X \ln^i X$ gives a precise main term in the order $X \ln^{r_1+r_2+1} X$. So replacing $F_i(t)$ with $M_i(t)$ in (3.6) will only result in an error in the order of $o(X \ln^{r_1+r_2+1} X)$ for each i. So we have shown that it suffices we compute the following integral I,

$$I = \int_1^X M_i(t) \frac{d}{dt}(M_2(X \frac{t}{X})) \, dt = -A_1 A_2 X \int_1^X \ln^{r_1} t \cdot \left(\ln^{r_2} \frac{X}{t} + r_2 \ln^{r_2-1} \frac{X}{t} \right) \frac{dt}{t}. \tag{3.8}$$

Using the substitution $u = \frac{\ln t}{\ln X}$, we reduce the integral

$$\int_1^X \ln^{r_1} t \cdot \ln^{r_2} \frac{X}{t} \frac{dt}{t} = \ln^{r_1+r_2+1} X \int_0^1 u^{r_1} (1-u)^{r_2} \, du \tag{3.9}$$

to Beta function $B(r_1+1, r_2+1)$, therefore

$$-I = A_1 A_2 B(r_1+1, r_2+1) X \ln^{r_1+r_2+1} X + o(X \ln X)^{r_1+r_2+1}. \tag{3.10}$$

This is of greater order than the boundary term (3.4), and hence finishes the proof of the first case.

Case 2: $F_i(X) = A_i X \ln^{r_i} X + o(X \ln^{r_i} X)$.

For any ϵ, we can bound $F_i(X)$ by $A_i X \ln^{r_i} X(1 + \epsilon) + O_\epsilon(1)$. Therefore we can bound

$$\liminf \frac{P(X)}{X \ln^{r_1+r_2+1} X} \geq (1 - \epsilon)^2 A_1 A_2 B(r_1+1, r_2+1),$$

by Case 1. Similarly we can bound

$$\limsup \frac{P(X)}{X \ln^{r_1+r_2+1} X} \leq (1 + \epsilon)^2 A_1 A_2 B(r_1+1, r_2+1).$$

So the limit exists and has to be $A_1 A_2 B(r_1+1, r_2+1)$. In case where some $A_i = 0$, we only need the upper bound to show the limit is 0.

\[\square \]
Lemma 3.2. Let $F_i(X) = 1\{s \in S_i \mid s \leq X\}$ be the asymptotic distribution of some multi-set S_i containing a sequence of positive real numbers that are greater or equal to 1 for $i = 1, 2$. Given $F_i(X) \sim A_i X^{n_i} \ln^{r_i} X$ where $n_i > 0$ and $r_i \in \mathbb{Z}_{\geq 0}$. If $n_1 > n_2$, then there exists a constant C such that

$$P(X) \sim C X^{n_1} \ln^{r_1} X.$$

Furthermore if $F_i(X) \leq A_i X^{n_i} \ln^{r_i} X$, then we have

$$P(X) \leq A_1 A_2 n_1^{r_1 - 1} n_2^{r_2 + 1} n_1 X^{n_1} \ln^{r_1} X.$$

Proof. For similar reasons as in the proof of Lemma 3.1, we could reduce to the case $n_1 = 1 > n_2$. Given general $n_1 > n_2$, it suffices to consider the modified multisets $S_i = \{s^{n_i} \mid s \in S_i\}$. Then for the modified multisets S_i, we have the distribution function $F_i(X) = F_i(X^{1/n_i}) \sim \frac{A_1}{n_1} X \ln^{r_1} X$ and $F_2(X) = F_2(X^{1/n_1}) \sim \frac{A_2}{n_2} X^{n_2/n_i} \ln^{r_i} X$ with $0 < n_2/n_1 < 1$. If we determine the product distribution $P_i(X)$ for $F_i(X)$, then we get $P(X) = P_i(X)$ since $s_1 s_2 \leq X^\lambda$ if and only if $s_1 s_2 \leq X$.

From now on we will assume $n_1 = 1 > n_2 > 0$. We first prove the existence of C in two steps.

Case 1: $F_1(X) = A_1 X \ln^{r_1} X + O(1)$, $F_2(X) = A_2 X^{n_2} \ln^{r_2} X + o(X^{n_2} \ln^{r_2} X)$.

As in Lemma 3.1 we need to bound the sum

$$P(X) = \sum_{\mu \lambda \leq X} a_{\mu} b_{\lambda} = \sum_{\lambda \leq X} b_{\lambda} A_1 \cdot \frac{X}{\lambda} \ln^{r_1}(\frac{X}{\lambda}) + \sum_{\lambda \leq X} b_{\lambda} O(1) \quad (3.11)$$

It suffices to show the sum

$$C(X) = \sum_{\lambda \leq X} \frac{b_{\lambda}}{\lambda} \left(1 - \frac{\ln \lambda}{\ln X}\right)^{r_1},$$

converges to a constant C', i.e., $C(X) = C' + o(1)$. Notice that $C(X)$ is monotonically increasing, so it suffices to show $C(X)$ is bounded above from some constant. For a given $X > 0$, we will denote \overline{X} to be the largest real number smaller or equal to X such that $b_{\overline{X}} > 0$. By summation by parts,

$$C(X) \leq \sum_{\lambda \leq X} \frac{b_{\lambda}}{\lambda} = \frac{F_2(X)}{X} + \int_1^X F_2(t) t^{-2} dt \quad (3.12)$$

is bounded by a constant. The first term is $o(1)$ since $1 - n_2 > 0$. For the second term, we can always find M such that $F_2(t) \leq M t^{-n_2} \ln^{r_2} t + M$, where the constant term M is a technical modification for $t = 1$ when $r_2 > 0$. One can compute the integral to see that it is bounded by a constant. Therefore, we have proved that $C(X) = C' + o(1)$ and

$$P(X) \sim A_1 C' X \ln^{r_1} X. \quad (3.13)$$

Case 2: $F_1(X) = A_1 X \ln^{r_1} X + o(X \ln^{r_1} X)$, $F_2(X) = A_2 X^{n_2} \ln^{r_2} X + o(X^{n_2} \ln^{r_2} X)$.

Notice that $C(X)$ is purely dependent on $F_2(X)$ and r_1, therefore the limit C' only depends on $F_2(X)$ and r_1. Therefore the coefficient of P is linearly dependent on A_1 from (3.13).
Now to get the upper bound on $P(X)$ in this case, we can bound $F_1(X) \leq A_1(1+\epsilon)X \ln^{r_1} X + O_r(1)$ from the assumption and compute the upper bound
\[
\limsup_{X \to \infty} \frac{P(X)}{X \ln^{r_1} X} \leq (1 + \epsilon)A_1C'
\]
by reducing to Case 1. Similarly, we can get the lower bound. Therefore,
\[
\lim_{X \to \infty} \frac{P(X)}{X \ln^{r_1} X} = A_1C'.
\]

Bound on C:
Next we assume further that $F_1(X) \leq M_i(X) = A_iX^{n_i} \ln^{r_i} X$ for all $X > 0$. We want to show the constant C can be bounded by $O(A_1A_2)$. We can still assume $n_1 = 1$ without loss of generality. By summation by parts,
\[
P(X) \leq \sum_{\mu \leq X} a_\mu M_2(\frac{X}{\mu}) \leq F_1(X)M_2(1) - \int_1^X M_1(t) \frac{d}{dt}(M_2(\frac{X}{t})) dt.
\]
Here notice that in order to get the second inequality, we do not need to worry about taking X in S_1 because (3.5) is negative. If $r_2 = 0$, the boundary term $F_1(X)M_2(1)$ is bounded by $A_1A_2X \ln^{r_1} X$.

This integral is a sum of multiple pieces in the form of
\[
I_{n,r_1,r_2} = \int_1^X t^{n} \ln^{r_1} t \ln^{r_2} \frac{X}{t} dt.
\]
It satisfies an induction formula
\[
I_{n,r_1,r_2} = -\frac{r_1}{n} I_{n,r_1-1,r_2} + \frac{r_2}{n} I_{n,r_1,r_2-1}
\]
with initial data
\[
I_{n,r_1,0} \leq \frac{1}{n} X^n \ln^{r_1} X, \quad I_{n,0,r_2} \leq \frac{r_2!}{n^{r_2+1}} X^n.
\]
Notice that I_{n,r_1,r_2} is always positive, by the induction formula one can show
\[
I_{n,r_1,r_2} \leq \frac{r_2!}{n^{r_2+1}} X^n \ln^{r_1} X.
\]
If $r_2 = 0$, then by (3.17), we get $-I$ together with the boundary term $F_1(X)M_2(1)$ bounded,
\[
P(X) \leq A_1A_2 \frac{1}{1-n_2} X \ln^{r_1} X.
\]
When both $r_i \neq 0$, we have
\[
P(X) \leq A_1A_2r_2! \frac{1}{(1-n_2)r_2+1} X \ln^{r_1} X.
\]
This formula is compatible with the special case where $r_2 = 0$.

13
Corollary 3.3. Let \(k \) be an arbitrary number field, and \(G_1 \subset S_n \) and \(G_2 \subset S_m \) be two Galois groups with no isomorphic nontrivial quotients. Suppose Malle’s conjecture holds for both groups, then there is a lower bound on \(N_k(G_1 \times G_2 \subset S_{mn}, X) \) that
\[
N_k(G_1 \times G_2 \subset S_{mn}, X) \geq CX^a \ln^r X + o(X^a \ln^r X),
\]
where \(a = \max\{a(G_1)/m, a(G_2)/n\} \). If \(a(G_1)/m = a(G_2)/n \), then \(r = b(G_1, k) + b(G_2, k) - 1 \); if \(a(G_1)/m > a(G_2)/n \), then \(r = b(G_1, k) - 1 \).

For the same value \(a \), a lower bound \(X^a \) is also obtained in [Ma02] Proposition 4.2. Here we improve on this general lower bound by adding a \(\ln^r X \) factor with a possibly positive \(r \) that we describe explicitly.

4 Uniformity Estimate for \(S_n \) and \(A \) number fields

In this section, we are going to include and prove some necessary uniformity results we need for \(S_3 \) cubic, \(S_4 \) quartic, \(S_5 \) quintic and abelian number fields over arbitrary global field \(k \). We will first treat the cases of \(S_3 \) cubic extensions and \(S_4 \) quartic extensions, since both cases take advantage of class field theory in a very similar fashion. Then we treat \(S_5 \) quintic fields by applying some adaptation of Bhargava’s geometric sieve. Finally, we apply class field theory to deduce a perfect local uniformity results for all abelian extensions.

4.1 Local uniformity for \(S_n \) extensions for \(n = 3, 4 \)

We will include the uniformity estimates for \(S_3 \) and \(S_4 \) extensions with certain ramification behavior at finitely many places. Both results are deduced from class field theory after relating degree \(n \) extensions with a certain ramification type to certain ray class fields.

We will say a \(S_3 \) cubic extension \(K/k \) is totally ramified at \(q \) for a square free ideal \(q \) of \(k \) if \(K \) is totally ramified at every prime divisor of \(q \). We have the following theorem:

Theorem 4.1 (Proposition 6.2, [DW88]). The number of non-cyclic cubic extensions over \(k \) which are totally ramified at a product of finite places \(q = \prod p_i \) is:
\[
N_q(S_3, X) = O_e\left(\frac{X}{|q|^{2-\epsilon}}\right),
\]
for any number field \(k \) and any square free integral ideal \(q \). The implied constant is independent of \(q \), and only depends on \(k \) and \(\epsilon \).

For discussions about \(S_4 \) quartic extensions, we will follow the definition in [Bha05]. Given a \(S_4 \) quartic extension \(K/k \), a prime ideal \(p \) of \(k \) is overramified in \(K/k \): 1) if \(p \) factors into \(\mathcal{P}_1 \cdot \mathcal{P}_2 \) for a finite place \(p \); 2) if \(p \) factors into a product of two ramified places for infinite place \(p \). Equivalently, this means the inertia group at \(p \) contains \(((12)(34)) \) or \(((1234)) \) up to conjugacy. We will say \(K/k \) is overramified at a square free ideal \(q \) if \(K/k \) is overramified at all prime divisors of \(q \). The uniformity estimate for overramified \(S_4 \) extensions over \(\mathbb{Q} \) is given in [Bha05], see Proposition 23. And we are going to prove the same uniformity over an arbitrary number field \(k \) following the method in [Bha05].

Theorem 4.2. The number of \(S_4 \) quartic extensions over \(k \) which are overramified at a product of finite places \(q = \prod p_i \) is:
\[
N_q(S_4, X) = O_e\left(\frac{X}{|q|^{2-\epsilon}}\right),
\]
for any number field k and any square-free integral ideal q. The implied constant is independent of q, and only depends on k and e.

Proof. For every Galois S_4 extension K_{24}/k, we denote K_6, K_4 and K_3 to be the subfields fixed by the subgroup $E = \{(e, (12), (34)), (12)(34)\}$, $F = \langle (12), (123) \rangle$ and $H = \langle E, (1234) \rangle$ respectively. Thus $[K_6 : k] = 6$, $[K_4 : k] = 6$ and $[K_3 : k] = 3$, and $K_3 \subset K_6$ and the Galois closure $\bar{K}_4/k = \bar{K}_6/k = K_{24}$. We apply the class field theory argument in [Bha05]. Firstly, we will show that for arbitrary S_4 extension K_{24} over k and for any finite place p away from 2, 3, we still have that the valuation of $N_{K_{24}/k}(\text{disc}(K_6/K_3))$ at p is even. Actually

\[N_{K_{24}/k}(\text{disc}(K_6/K_3)) = \text{disc}(K_6/k)/\text{disc}(K_3/k)^2, \]

therefore it suffices to show $\text{Disc}(K_6)$ has even valuation at p. If $p \nmid 2, 3$, then it is always tamely ramified. In order to compute $\text{disc}(K_6/k)$, we can compute the action of G on E-cosets inside G. This gives a permutation group structure of $S_4 \subset S_6$. The valuation at p will be $6 - \#\{ \text{orbits of } q \}$ where $q \in S_4$ is one generator of one inertia group at p. By computation and enumeration of all possible cycle structure of $g \in S_4 \subset S_6$, we can see the number of orbits can only be 2 or 4, which proves our claim that the valuation is always even at p. Moreover, we could also compute the valuation of $\text{disc}(K_3/k)$ at such p. If one inertia group at p is $\langle (12)(34) \rangle$ or $\langle (1234) \rangle$ up to conjugacy, i.e., the prime p is overramified in K_4/k, then the valuation of $N_{K_{24}/k}(\text{disc}(K_6/K_3))$ at p is 2, and if one inertia group is $\langle (123) \rangle$ or $\langle e \rangle$ up to conjugacy, then the valuation is 0 at p.

Secondly, as proved in [BSW17] we still have the mean 2-class number of non-cyclic cubic extensions over any number field k is bounded, i.e.,

\[\sum_{K \in \mathcal{C}(X)} h^*_2(K/k) = O(X), \]

where $\mathcal{C}(X) := \{ K/k \mid \text{Gal}(K/k) = S_3, \text{Disc}(K/k) < X \}$. This statement essentially follows from $N_6(S_4, X) = O(X)$.

We will first prove this theorem for a square-free ideal q that is relatively prime to any prime ideal above 2 and 3. From above discussion on the relation between the valuation of $N_{K_{24}/k}(\text{disc}(K_6/K_3))$ at p and the S_4 quartic extensions being overramified at p, we can see that every S_4 quartic extension K_4/k that are overramified at q could be generated as a subfield of K_{24} where: 1) there exists non-cyclic cubic extension K_3 where K_6/K_3 is a quadratic extension over K_3 and $\bar{K}_6/k = K_{24}$; 2) the relative discriminant $N_{K_{24}/k}(\text{disc}(K_6/K_3))$ is a square (away from 2, 3) with $q^2 | N_{K_{24}/k}(\text{disc}(K_6/K_3))$. We will write $N_{K_{24}/k}(\text{disc}(K_6/K_3))$ to denote the product $\prod_{p|\text{val}_p(N_{K_{24}/k}(\text{disc}(K_6/K_3)))} p^\alpha(p_{\text{val}_p(N_{K_{24}/k}(\text{disc}(K_6/K_3)))})$ over all primes p of k that are relatively prime to 2 and 3. Given a fixed K_3 and an ideal n of k, denote the number of quadratic extension K_6 with $N_{K_{24}/k}(\text{disc}(K_6/K_3)) = n^2$ by $g(K_3, n)$. By class field theory, at each $p|n$, the number of homomorphisms from $\prod_{p|\text{val}_p(p_{\text{val}_p(N_{K_{24}/k}(\text{disc}(K_6/K_3)))})} p^\alpha$ to $\mathbb{Z}/2\mathbb{Z}$ with relative discriminant p^2 is bounded by 3, therefore $g(K_3, n)$ is bounded

\[g(K_3, n) \leq 3(n^2)^{\omega(n)}, \]

where κ only depends on k. For such quadratic extensions K_6/K_4, the quartic field K_4 inside K_6/k satisfy that $\text{disc}(K_3/k)n^2|\text{disc}(L/k)$. Therefore for each fixed K_3, in order to bound the number of quartic fields K_4/k that are overramified at q and with K_3 a subfield of K_4/k, it suffices to add up $g(K_3, n)$ over all n with $q|n$ and $\text{Disc}(K_3/k)N_{K_6/Q}(n)^2 \leq X$. We will write $|n|$ in short for $N_{K_6/Q}(n)$. Now denote

\[S(q, X) := \{ n \in O_k \mid n \text{ square free}, q|n, |n|^2 \leq X \}. \]
Then the number of S_4 quartic extensions L/k with $q^2 | \text{disc}(L/k)$ and $\text{Disc}(L/k) < X$ is bounded by

$$N_q(S_4, X) = \sum_{K_3/k \in S_4} \sum_{n \in S_q(X)} \kappa h_2^2(K_3/k) 3^{\omega(n)}$$

$$\leq \kappa \sum_{K_3/k} 3^{\omega(q)} \sum_{m \in S(1, X/\text{Disc}(K_3/k))} \kappa h_2^2(K_3/k) 3^{\omega(m)}$$

$$\leq \kappa 3^{\omega(q)} \sum_{m \in S(1, X/|q|^2)} 3^{\omega(m)} \sum_{K_3 \in F(X/|m|^2|q|^2)} \kappa h_2^2(K_3/k)$$

$$\leq \kappa 3^{\omega(q)} \sum_{m \in S(1, X/|q|^2)} 3^{\omega(m)} O(X/|m|^2|q|^2)$$

$$\leq O_* \left(\frac{X}{|q|^2 - \epsilon} \right) \sum_{m} \frac{1}{|m|^2 - \epsilon} = O_* \left(\frac{X}{|q|^2 - \epsilon} \right).$$

This finishes the proof for q that are relatively prime to 2 and 3. For general square free ideal q of k, we can write $q = q_1 q_2$ where $q_1 = \prod_{p|q} p^{\nu_p(q)}$. Therefore

$$N_q(S_4, X) \leq N_{q_1}(S_4, X) = O_* \left(\frac{X}{|q_2|^2 - \epsilon} \right) \leq \prod_{p|\nu} |p|^2 O_* \left(\frac{X}{|q|^2 - \epsilon} \right).$$

$$\square$$

4.2 Local uniformity for S_n extensions for $n = 5$

In this section, we are going to prove the uniformity of S_5 quintic extensions by geometry of numbers based on previous works [Bha10, Bha14, BSW17]. The goal will be to prove Theorem 1.3.

We will use slightly different notation just for this section. Let K be an arbitrary number field that will be our base field throughout this section with degree $d = \text{deg}(K)$ (Warning: the base field is denoted k in some other section, but exactly in this subsection we save k for codimension to follow the notation in [Bha14]). Let Y be a closed sub-scheme in $\mathbb{A}^n_{O_K}$. Given a prime p of K, we will say an S_5 quintic extension L/K is totally ramified at p if $p = \mathfrak{P}^5$ in L. Given a square free ideal q of K, we will say an S_5 quintic extension L/K is totally ramified at q if L/K is totally ramified at all prime divisors of q.

The proof is an adaptation of Bhargava’s geometric sieve method [Bha14]. By [Bha14], in the prehomogenous space, those lattice points that parametrize orders with certain ramification type at a finite place p correspond to $O_K/p O_K$-points of Y, where Y is a certain closed subscheme cut out by partial derivatives of the discriminant polynomial. The key theorem in [Bha14] is Theorem 3.3. Here for our application, instead of considering lattice points that, after mod p, are lying in $Y(O_K/p O_K)$ for some prime $p > M$, we need to count the number of points that are lying in $Y(O_K/p O_K)$ for finitely many specified primes $\{p_i\}$. So the first step of the proof is to prove an upper bound on counting lattice points lying in $Y(O_K/q O_K)$ with $q = \prod q_i$ and within bounded compact region, see Theorem 4.3, 4.4 and 4.6.

The second step of the proof is to count the number of lattice points in the fundamental domain of the prehomogenous space (the parametrization space for quintic orders) that are lying in $Y(O_K/q O_K)$. In order to get a power saving error for our estimate, which is crucial for our application, we apply the averaging technique, introduced in [Bha05] and applied in [Bha16, BBP10, BST13, ST], as suggested in Remark 4.2 in [Bha14]. In order to apply the averaging technique, we will need to solve the question in the first step with a compact region
in the form of mrB where $B \subset \mathbb{R}^n$ is a fixed compact region, the factor m is a unipotent matrix
in $GL_n(\mathbb{R})$, and $r = (r_1, \cdots, r_n)$ is a tuple of scaling factors with possibly different scaling
factors in different directions. Here $n = 40$ is the dimension of the parametrization space for quintic orders. Finally the proof of Theorem 4.3 carries out the full computation inside the parametrization space carefully. All theorems and conclusions in this section are also proved over arbitrary number fields.

Theorem 4.3. Let B be a compact region in \mathbb{R}^n having finite measure. Let Y_i for $1 \leq i \leq N$ be
any closed subschemes of $A^n_\mathbb{Q}$ of codimension k_i, say $k = \max \{k_i \mid 1 \leq i \leq N\}$, let $q = \prod_{i=1}^N p_i$ be a square free integer, then we have

$$\sharp\{a \in rB \cap \mathbb{Z}^n \mid \forall 1 \leq i \leq N, a(\text{mod } p_i) \in Y_i(\mathbb{Z}/p_i\mathbb{Z})\} = O(r^{n-k} \cdot C^{\sum k_i \cdot \max\{1, \cdots, r^s \prod_{i,s-k+i \geq 0} p_i^{s-k+i} \cdot \prod_{i} p_i^{k_i}}), \quad (4.3)$$

where the implied constant depends only on B and Y_i, and C only depends on the maximal degree of Y_i and k. In particular, by letting $Y_i = Y$ with codimension k, and $q = \prod_{i=1}^N p_i$, we get

$$\sharp\{a \in rB \cap \mathbb{Z}^n \mid a(\text{mod } q) \in Y(\mathbb{Z}/q\mathbb{Z})\} = O(r^{n-k} \cdot C^{k\omega(q)} \cdot \max\{1, \left(\frac{q}{q}\right)^k\}, \quad (4.4)$$

where the implied constant depends only on B and Y, and C only depends on Y and k.

Proof. Although (4.4) is our main goal for later application, to prove it in a convenient way we will use induction on n and k_i to prove a more general formula (4.3). We will focus on proving (4.3). The case when $k = 0$ is trivial since the number of lattice points in the box is $O(r^n)$. For questions with general n, k_i and p_i, let’s write the key parameters in the form of $[(n, k_1)p_1, \cdots, (n, k_N)p_N]$ to denote the corresponding counting question with these parameters.

The initial case is $[(1, k_1)p_1, \cdots, (1, k_N)p_N]$ where there exists i with $k_i = 1$. For example, we look at the case $[(1, 1)p_1, (1, 0)p_2, \cdots, (1, 0)p_N]$ with only $k_1 = 1$. Let’s say Y_1 is cut out by the polynomial $f(x)$, all i-th condition with $i > 1$ does not put any condition on x. Let $S = S(Y_1)$ (only depends on Y_1) be the set of primes at which $f(x) \equiv 0$. If p_1 is away from $S(Y_1)$, then the number of solutions in $\mathbb{Z}/p_1\mathbb{Z}$ is bounded by C, therefore the number of lattice points is $O(C \cdot \max\{1, \frac{r}{p_1}\})$, where C could be taken to be the degree of f and the implied constant only depends on f and B. If $p_1 \in S$, then we can get an upper bound

$$O(r) \leq \left(\prod_{p \in S} p\right) \cdot O(\max\{1, \frac{r}{p_1}\}) \leq O(C \cdot \max\{1, \frac{r}{p_1}\})$$

with the final implied constant depends only on B and Y_1. For the general case where $n = 1$ and $k = 1$, let’s say Y_1 is cut out by the polynomial $f^{(1)}(x)$. Similarly, for each i with $k_i = 1$, we could get the number of solutions in $\mathbb{Z}/p_i\mathbb{Z}$ is bounded by C, so by Chinese remainder theorem, the number of solutions in $\mathbb{Z}/q\mathbb{Z}$ with $q = \prod_{i} p_i^{k_i}$ is bounded by $\prod_{i,k_i=1} C_i \leq C^{\sum k_i}$. So we can get an upper bound

$$O(1) \cdot C^{\sum k_i \cdot \max\{1, \frac{r}{\prod_{i} p_i^{k_i}}\}),$$

where the implied constant depends on Y_i and B and C could be taken to be the maximum degree of Y_i for all i.

Next we apply induction on n and k_i to solve the general case $[(n, k_1)p_1, \cdots, (n, k_N)p_N]$. We will use an observation in Lemma 5.1 [Poo03] for the induction. Let $\pi : A^n_\mathbb{Z} \to A^{n-1}_\mathbb{Z}$ be the projection onto the first $n - 1$ coordinates. Given a variety Y, for $i = 0, 1$, let Z_i be the
set of $z \in \mathbb{A}^{n-1}_\mathbb{Z}$ such that the fiber $Y_z := Y \cap \pi^{-1}(z)$ has codimension i in $\pi^{-1}(z)$. Then by dimension formula, the subset Z_i has codimension at least $k-i$ in $\mathbb{A}^{n-1}_\mathbb{Z}$. More explicitly, as the argument in Lemma 3.1 in [Bha14], if Y has codimension k, then without loss of generality, we could assume Y is cut out by f_j for $j = 1, \ldots, k$, and by elimination theory, we could assume $f_j = f_j(x_1, \ldots, x_{n-1})$ for $j \leq k-1$ and $f_k(x_1, \ldots, x_n) = \sum_{i\leq d} h_i(x_1, \ldots, x_{n-1})x_i^d$ where d is the degree of f_k as a polynomial in x_n. The subset $Z_1 \subset \mathbb{A}^{n-1}_\mathbb{Z}$ is contained in the closed subscheme Z'_1 cut out by f_1, \ldots, f_{k-1} with codimension $k-1$ in $\mathbb{A}^{n-1}_\mathbb{Z}$. The subset Z_0 is the close subscheme cut out by $f_1, \ldots, f_{k-1}, h_0, \ldots, h_d$ with codimension at most k in $\mathbb{A}^{n-1}_\mathbb{Z}$.

For Y_i where $1 \leq i \leq N$, let's denote $Z_{i,j}$ to be corresponding projection of Y_i with codimension j under π. If $a = (x_1, \ldots, x_{n-1})$ satisfy $a \pmod{p_j} \in Z_{i,j}$, then the number of such a in $\mathbb{A}^{n-1}_\mathbb{Z}$ is bounded by the answer of the following question $\sum_{i,s} a(x_i) \cdot \max\{1, \prod_i p_i^{\mathbb{Z}}\}$, which by induction, is bounded by

$$O(r^{n-k'} \cdot C \sum_{i,j} k_i \cdot \frac{r^{s-i}}{\prod_i p_i^{s-i+j-i}} \cdot \frac{r\cdot k'}{\prod_i p_i^{\mathbb{Z}}},$$

where $k' = \max\{k_i - j_i \mid 1 \leq i \leq N\}$ and the implied constant only depends on the finitely many schemes $Z_{i,j}$ for $1 \leq i \leq N$ and $j = 0, 1$. Now for any such given a, the number of integral x_n such that (a, x_n) satisfies the original question is bounded by

$$O(1) \cdot C \sum_{i,j} k \cdot \frac{r}{\prod_i p_i^{\mathbb{Z}}}.$$

Notice here we do not use the induction, instead we count the lattice points directly from Chinese remainder theorem and geometry of numbers, like we did in the case $n = 1$. The constant only depends on the degree of f_k as a polynomial in x_n, therefore could be made uniform for all such a. By taking the product of the two parts, the total number of (x_1, \ldots, x_n) with (x_1, \ldots, x_{n-1}) lying in the class of $\sum_{i,s} a(x_i) \cdot \max\{1, \prod_i p_i^{\mathbb{Z}}\}$ is bounded by

$$O(r^{n-k'} \cdot C \sum_{i,j} k_i \cdot \frac{r^{s-i}}{\prod_i p_i^{s-i+j-i}} \cdot \frac{r\cdot k'}{\prod_i p_i^{\mathbb{Z}}}, \max\{1, \prod_i p_i^{\mathbb{Z}}\}) \leq O(r^{n-k} \cdot C \sum_{i,s} k_i \cdot \frac{r^{s-i}}{\prod_i p_i^{s-i+j-i}} \cdot \frac{r\cdot k}{\prod_i p_i^{\mathbb{Z}}}).$$

One could check the inequality by computations. One convenient one is to separate the discussions when $k' = k-1$ or $k' = k$. This gives an upper bound for all classes $\sum_{i,s} a(x_i) \cdot \max\{1, \prod_i p_i^{\mathbb{Z}}\}$ under the projection. There are altogether $2\sum_{i,s} a(x_i) \cdot \max\{1, \prod_i p_i^{\mathbb{Z}}\}$ possible cases, so the same bound, after multiplied by $2\sum_{i,s} a(x_i) \cdot \max\{1, \prod_i p_i^{\mathbb{Z}}\}$, holds for the total counting by adding up over all cases. Since we need to multiply by $2\sum_{i,s} a(x_i) \cdot \max\{1, \prod_i p_i^{\mathbb{Z}}\}$, we will need to take $2C$ instead of C. The induction stops after at most k steps, so it suffices to take $2^k D$ where D is the maximal degree of Y_i, among all i, for the constant C in the theorem.

It is very important that for every step in induction, the dependence of the implied constant all comes from the finitely many schemes $Z_{i,j}$ under π and B. Therefore after finitely many induction steps, we prove the main statement (4.3).

Notice that although Theorem 3.3 in [Bha14] focuses on counting lattice points where there exists $p > M$ such that the points are lying in $Y(\mathbb{Z}/p\mathbb{Z})$, it also gives an upper bound for counting at a single prime p by letting $M = p$. On one hand, our statement includes the cases where
residue conditions are specified at finitely many primes for finitely many schemes, instead of at a single prime for a single scheme. On the other hand, as suggested by Bhargava, we can get a slightly better error in the order of \(r^{n-k} \) instead of \(r^{n-k+1} \).

In order to apply the averaging technique, we also need to consider the number of lattice points in the box \(mrB \) that is not necessarily expanding homogeneously in each direction. Here \(m \) is a lower triangle unipotent transformation in \(GL_n(\mathbb{R}) \), and \(r = (r_1, \ldots, r_n) \) is the scaling factors and the estimate will depend on \(r_i \). We will see in the proof that the introduction of \(m \) here does not change the estimate much, however it is crucial to deal with different \(r_i \) in different direction.

Theorem 4.4. Let \(B \) be a compact region in \(\mathbb{R}^n \) having finite measure. Let \(Y_t \) for \(1 \leq t \leq N \) be any closed subschemes of \(k^2 \) of codimension \(k_t \), say \(k = \max\{k_t \mid 1 \leq t \leq N\} \). Let \(r = (r_1, \ldots, r_n) \) be a diagonal matrix of positive real number where \(r_i \geq \kappa \) for a certain absolute constant \(\kappa > 0 \). Let \(q = \prod_{t=1}^N p_t \) be a square free integer, and \(m \) be a lower triangle unipotent transformation in \(GL_n(\mathbb{R}) \). Then we have

\[
\sharp \{a \in mrB \cap \mathbb{Z}^n \mid \forall 1 \leq t \leq N, a(\text{mod } p_t) \in Y_t(\mathbb{Z}/p_t\mathbb{Z})\} = O\left(\prod_{t=1}^N r_t \cdot C_{\Sigma_t k_t} \cdot \max\left\{\prod_{i=1}^{k_t} r_i^{-1}, \ldots, \prod_{s=0}^{k_t-s} r_i^{-1} \prod_{s=k_t+1}^{k_t} p_t, \ldots \right\} \prod_{i=1}^n p_t^{k_t}\right)
\]

(4.6)

where the implied constant depends only on \(B \) and \(Y_t \), and \(C \) only depends on the maximal degree of \(Y_t \) for all \(t \) and \(k \). In particular, by letting \(Y_t = Y \) and \(q = \prod_{t=1}^N p_t \), we get

\[
\sharp \{a \in mrB \cap \mathbb{Z}^n \mid a(\text{mod } q) \in Y(\mathbb{Z}/q\mathbb{Z})\} = O\left(\prod_{t=1}^N r_t \cdot C^{k_t}(q) \cdot \max\{1, q, q^2, \ldots, q^k \} \right)
\]

where the implied constant depends only on \(B, Y \), and \(\kappa \), and \(C \) only depends on the degree of \(Y \) and \(k \).

Proof. Similar with the proof of Theorem 4.3 we prove the theorem by induction.

For case \(k = 0 \), we can get the result \(O(\prod_{t=1}^N r_t) \) directly because the total count of lattice points in \(mrB \) only differs with those in \(rB \) by lower dimension projections of \(rB \) which could be bounded by \(O(\prod_{t=1}^N r_t) \) where the implied constant depends on \(\kappa \).

The initial case when \(k = 1, n = 1 \) with type \([1, k_1]_{p_1} \mid N \] is estimated to be

\[
O(1) \cdot \prod_{t,k_t=1}^N C_{\Sigma_t k_t} \cdot \max\{1, r_t / \prod_t p_t^{k_t}\}
\]

It is the same with Theorem 4.3 since there is no non-trivial unipotent action.

For general \(n \) and \(k \), we will still consider the projection \(\pi \) as introduced in Theorem 4.3. By induction, the number of points \(a = (x_1, \cdots, x_{n-1}) \) with \(a(\text{mod } p_1) \) lying in \(Z_{t,j_t}(\mathbb{Z}/p_t\mathbb{Z}) \) for all \(t \) is bounded by

\[
O\left(\prod_{t=1}^N r_t \cdot C_{\Sigma_t k_t-j_t} \cdot \max\left\{\prod_{i=1}^{k_t'} r_i'^{-1}, \ldots, \prod_{i=1}^{k_t-s} r_i'^{-1} \prod_{s=k_t-j_t}^{k_t} p_t, \ldots \right\} \prod_{t=1}^n p_t^{k_t-j_t}\right)
\]

where \(k' = \max\{k_t - j_t \mid 1 \leq t \leq N\} \) and the implied constant only depends on the finitely many schemes \(Z_{t,j_t} \) for \(1 \leq t \leq N \) and \(j = 0, 1, \) and \(B \) and \(\kappa \). Now for such a given \(a = (x_1, \cdots, x_{n-1}) \), the number of integral \(x_n \) such that \((x_1, \cdots, x_n)\) satisfies the original question is bounded by

\[
O(1) \cdot C_{\Sigma_t j_t} \cdot \max\{1, r_n / \prod_t p_t^{j_t}\}
\]
since the action of m only translates the range of x_n, but keeps the length as big as r_n. Therefore the total number of (x_1, \ldots, x_n) with (x_1, \ldots, x_{n-1}) lying in this class is bounded by

$$\text{O}(\prod_{i=1}^{n-1} r_i) \cdot C \sum_i k_i \cdot \max \left\{ \prod_{i=1}^{k_i} r_i^{-1}, \ldots, \prod_{t,s-k'=k_i-j_t \geq 0} p_t^{i} r_i^{-1} \right\} \cdot \max \left\{ 1, \prod_{t} P_t^i \right\}$$

$$\leq \text{O}(\prod_{i=1}^{n} r_i) \cdot C \sum_i k_i \cdot \max \left\{ \prod_{i=1}^{k_i} r_i^{-1}, \ldots, \prod_{t,s-k'=k_i-j_t \geq 0} p_t^{i} r_i^{-1} \right\} \cdot \max \left\{ 1, \prod_{t} P_t^i \right\},$$

(4.7)

where the implied constant only depends on Z_t, B and κ. We can similarly get the same bound for every class depending on j_t for every $1 \leq t \leq N$. So after finitely many steps of induction, we prove the main theorem.

\[\square\]

Remark 4.5. We can consider the above theorem as an improvement of Theorem 26 [BST13] in this special case (i.e. the lattices for orders ramified at q). Indeed, the cubic rings K that are ramified at p with $\mathfrak{p}^k \mid \text{Disc}(K)$ are a union of $O(p^{4-k})$ translation of lattices. So we basically prove that when we count these lattice points in the expanding ball mrB, we do not get those error terms at the tail in line (29) in [BST13].

Proof of Theorem 1.3 over \mathbb{Q}. We first prove this statement over \mathbb{Q} and then will show that the computation over arbitrary number field K should give the same answer. Recall that the quintic order is parametrized by $G(\mathbb{Z})$-orbits in $V(\mathbb{Z})$ where $G = GL_4 \times GL_5$ and V is the space of quadruples of skew symmetric 5×5 matrices. Denote the fundamental domain of $G(\mathbb{R})/G(\mathbb{Z})$ by F and B is a compact region in $V(\mathbb{R})$. Let S be any $G(\mathbb{Z})$-invariant subset of $V^{(i)}_\mathbb{Z}$ which specifies a certain property of quintic orders, denote $S^{\mathbb{R}}$ to be the subset of irreducible points in S, and $N(S; X)$ denotes the number of irreducible-$G(\mathbb{Z})$ orbits in S with discriminant less than X. Then by formula (20) in [BST13], the averaging integral for a certain signature i (over \mathbb{Q}, there are only two possible signatures $i = +$ and $i = -$, meaning those orders with positive or negative discriminant, the choice of signature does not change the computation and there are only finitely many possible signature when the base field K is fixed, therefore we will ignore the dependence on i in our discussion) is

$$N(S; X) = \frac{1}{M_i} \int_{g \in F} \sharp \{ x \in S^{\mathbb{R}} \cap gB \cap V^{(i)}_\mathbb{Z} : \text{Disc}(x) < X \} \, dg$$

(4.8)

where M_i is a constant depending on B.

Here for our purpose, $S = S_q$ should be the set of maximal orders that are totally ramified at all primes $p|q$. We can replace the condition $x \in S^{\mathbb{R}}$ by $x \in Y(\mathbb{Z}/q\mathbb{Z})$ to get an upper bound, where Y is a codimension $k = 4$ variety in a $n = 40$ dimensional space defined by $f^{(j)} = 0$ for all partial derivatives of the discriminant polynomial with order $j < 4$. See [Bha14] for more discussion on definition of Y.

For $g \in G(\mathbb{R})$, we have $g = m\alpha \lambda \in NAKA$ as the Iwasawa decomposition [Bha10]. Here m is a lower triangle unipotent tranformation, $a = (t_1, \ldots, t_n)$ is a diagonal element with determinant 1 and k is an orthogonal transformation in $G(\mathbb{R})$ and $\lambda = \lambda I$ is the scaling factor. We will choose B such that $KB = B$, so $gB = m\alpha \lambda B = mrB$, where we denote r to be $\lambda(t_1, \ldots, t_n)$ with $\prod_1^n t_i = 1$. Lastly, the requirement $|\text{Disc}(x)| < X$ could be dropped as long as we take $\lambda \leq O(X^{1/n})$ where this implied constant depends only on B. So we have

$$\sharp \{ x \in S^{\mathbb{R}} \cap gB \cap V^{(i)}_\mathbb{Z} : |\text{Disc}(x)| < X \} \leq \sharp \{ x \in mrB \cap \mathbb{Z}^n : a(\text{mod} q) \in Y(\mathbb{Z}/q\mathbb{Z}) \}.$$
We are going to apply Theorem 4.4 to estimate the integral in (4.8). By [Bha10], all S_5 orders are parametrized by quadruples of skew symmetric 5×5 matrices. So there are 40 variables and therefore the dimension for the whole space is $n = 40$. Let’s call those variables a_{ij}, where $1 \leq l \leq 4$ means the m-th matrix, $1 \leq i \leq 4$ is the row index of a skew-symmetric 5×5 matrix, $2 \leq j \leq 5$ is the column index. We can define the partial order among all 40 entries: a_{ij}^r is smaller than a_{im}^r, if $i \leq l$, $j \leq m$ and $k \leq n$. The scaling factor t_i in our situation could be described by a pair of diagonal matrices (A, B) where

$$A = \text{diag}(s_1^{-3}s_2^{-1}s_3^1, s_1s_2^{-1}s_3^1, s_1s_2s_3^{-1}, s_1s_2s_3^3)$$

and

$$B = \text{diag}(s_4^{-3}s_5^{-3}s_6^{-2}s_7^1, s_4s_5^{-3}s_6^{-2}s_7^1, s_4s_5s_6^2s_7^{-1}, s_4s_5s_6s_7^1, s_4s_5^2s_6^2s_7^1).$$

Then $t_{ij} = A_{i,j}B_{i,j}$ is the scaling factor for the a_{ij}^r entry. Since the fundamental domain requires that all $s_i \geq C$, this partial order also gives the partial order on the magnitude of $r_{ij} = \lambda t_{ij}$.

There are many regions in the fundamental domain that provides irreducible S_5-orders. We will consider the biggest region first, i.e., the points with $a_{12}^r \neq 0$. This region requires that $\lambda s_1^{-3}s_2^{-1}s_3^{-1}s_4^{-3}s_5^{-3}s_6^{-2}s_7^{-2} \geq \kappa$, therefore $r_{ij} \geq \kappa$ for all l, i, j. Let us denote this region in \mathcal{F} to be $D_{\lambda} = \{s_i \geq C | s_i^3s_3s_6^5s_7^2 \leq \lambda/\kappa \}$. So we could apply Theorem 4.4 directly. Let’s call this count $N^*(Y; X)$. The corresponding integrand, i.e., the number of lattice points in the expanding ball gB where $g \in D_{\lambda}$ is bounded by

$$L^1 = \frac{1}{m!} \int_{Z/\mathbb{Z}} \left| x \left(\text{mod } q \right) \in \right. Y \left(\text{mod } q \right) \left. \right| \left((\% \text{ mod } q) \right) \left. \right(\frac{q^k}{\lambda^k} \right) = O \left(\frac{\lambda^{40}}{q^4} \right) \cdot \frac{\lambda^{40}}{q^4} \cdot \max \left\{ \frac{1}{\lambda}, \frac{q^2}{\lambda^2}, \frac{q^3}{\lambda^3}, \frac{q^4}{\lambda^4} \right\} \left(\frac{\lambda^4}{\lambda} \right) \left(\frac{\lambda^4}{\lambda} \right) \left(\frac{\lambda^4}{\lambda} \right) \left(\frac{\lambda^4}{\lambda} \right). \quad (4.9)$$

To integrate L^1 over D_{λ} and then against λ, we just need to focus on the inner integral over D_{λ}, and see whether the integral of those product of t_{ij} over D_{λ} produces $O(1)$ or λ^r for some $r > 0$ as the result. If it is $O(1)$, then we just need to integrate against λ and get the expected estimate, i.e., $\frac{X^{\lambda_{\lambda_{\lambda_{\lambda_{\lambda}}}}}}{q}$ for $0 \leq i \leq 4$ where i is the number of t_{ij} factors in the product; if it is λ^r for some power $r > 0$, then we will get a bigger power of X than the expected counting $\frac{X^{\lambda_{\lambda_{\lambda_{\lambda_{\lambda}}}}}}{q}$.

For example, $t_{112}^r = s_1s_2s_3s_4s_5^2$ and $dg = \delta_5ds^\infty = s_1^{-8}s_2^{-12}s_3^{-8}s_4^{-20}s_5^{-30}s_6^{-30}s_7^{-20}ds^\infty$, therefore $t_{112}^r\delta_5$ contains s_i with negative power for each i. So after integrating over D_{λ}, it is $O(1)$. Same thing holds for all other products listed as above except: $t_{112t_{113}t_{123}}$, $t_{112t_{113}t_{114}}$, $t_{112t_{113}t_{114}t_{123}}$, $t_{112t_{113}t_{114}t_{123}}$, $t_{112t_{113}t_{114}t_{123}}$, $t_{112t_{113}t_{114}t_{123}}$. All these products have at most 4 t_{ij} factors, so the biggest power we could get for s_4, s_5, s_6 and s_7 should be $(B_{1B_{2}})^4 = s_4^{-12}s_5^{-24}s_6^{-16}s_7^{-8}$, so those later s_i would not be a problem.

Among the products of 3 factors, the s_i part for small i in $t_{112t_{113}t_{123}}$ and $t_{112t_{113}t_{114}}$ is $s_1^{-9}s_2^{-3}s_3^{-3}$. Since $s_1 \leq O(\lambda^{1/3})$, the integral over D_{λ} should be $O(\lambda^{1/3})$. Among the products of 4 factors, $t_{112t_{113}t_{114}t_{123}}$ and $t_{112t_{113}t_{114}t_{123}}$ has factor $s_1^{-8}s_2^{-4}s_4^{-4}$, while $t_{112t_{113}t_{114}t_{123}}$ has a smaller term $s_1^{-12}s_2^{-4}s_4^{-4}$, whose integral ends up being $O(\lambda^{4/3})$.

21
So the whole result is:

\[
N^1(Y; X) \leq \frac{1}{M_t} \int_{\lambda = O(1)} O(X^{1/40}) \int_{D\lambda} L_1 s_1^{-\epsilon} s_2^{-7} s_3^{-12} s_4^{-8} s_5^{-8} s_6^{-30} s_7^{-60} ds \, d\lambda^X
\]

\[
= O(C^{\omega(q)}) \cdot \max \left\{ \frac{X}{q^4}, \frac{X^{38/40}}{q^{4-2}}, \frac{X^{(37+1/3)/40}}{q^{4-3}}, \frac{X^{(36+4/3)/40}}{q^{4-4}} \right\} \quad (4.10)
\]

\[
= O(C^{\omega(q)}) \cdot \max \left\{ \frac{X}{q^4}, \frac{X^{38/40}}{q^{4-2}}, \frac{X^{(36+4/3)/40}}{q^{4-4}} \right\} .
\]

We know that there are a lot of regions containing irreducible points for S_5 extensions. However notice that the last term above is $X^{(37+1/3)/40}$, therefore we will not compute for those regions with a total counting smaller than this: these regions must contribute an even smaller counting when we impose this restriction on ramification in those regions. By Table 1 in [Bha10], we can see that there are still three regions left to be considered when $a_{12} = 0$:

1. $a_{13}^1 \neq 0$, $a_{12}^2 \neq 0$;
2. $a_{13}^2 = 0$ but $a_{12}^2 \neq 0$;
3. $a_{13}^2 = 0$ but $a_{12}^2 \neq 0$.

For Region 2, $D_\lambda = \{ s_i \geq C_i \mid s_1^3 s_2 s_3 s_4 s_5 s_6^2 \leq \lambda / \kappa, s_1^{-1} s_2 s_3 s_4 s_5 s_6^2 \leq \lambda / \kappa \}$. The definition of D_λ makes it clear that for all $t_{ij} \geq t_{113}, t_{212}$ in the partial order we define, we have $t_{ij} \geq \kappa$. And t_{112} could be arbitrarily close to κ. So we will assume t_{112} to be 1 when we plug into Theorem 4.4 and get an upper bound on L^2:

\[
L^2 = O \left(\prod_{i=2}^{10} \frac{r_i}{q^2} \right) C^{\omega(q)} \cdot \max \left\{ \frac{q^3}{\lambda^2 t_{112}}, \frac{q^2}{\lambda^2 t_{112} t_{113}}, \frac{q^3}{\lambda^2 t_{112} t_{113} t_{123}}, \frac{q^3}{\lambda^4 t_{112} t_{113} t_{123} t_{144}}, \frac{q^3}{\lambda^4 t_{112} t_{113} t_{123} t_{144} t_{412}} \right\}.
\]

The list L^2 contains everything in L^1 except the first term $O(\lambda^{40}/q^4) \cdot C^{\omega(q)}$. As considered before, we only need to focus on those difficult terms and it suffices to see that $s_1 \leq O(\lambda^{1/3})$ again in this D_λ.

For 3 and 4, things can be done similarly. In case 3, $a_{114} \neq 0$ and $a_{123} \neq 0$ together implies that $t_{114}^{-1} t_{123}^{-1} = s_1^6 s_2^2 s_3^4 s_4^2 s_5^6 s_7^2 \leq O(\lambda^2)$, so $s_1 \leq O(\lambda^{1/3})$. In case 4, $a_{113} \neq 0$ implies that $s_1^3 s_2 s_3 s_4 s_5 s_6^2 \leq O(\lambda)$, so $s_1 \leq O(\lambda^{1/3})$.

Therefore, we get the uniformity result for

\[
N_q(S_5, X) = O \left(\frac{X}{q^{1-\epsilon}} \right) + O \left(\frac{X^{38/40}}{q^{4-2-\epsilon}} \right) + O \left(\frac{X^{(36+4/3)/40}}{q^{4-4-\epsilon}} \right)
\]

\[
= O \left(\frac{X}{q^{1-\epsilon}} \right) + O \left(\frac{X^{(36+4/3)/40}}{q^{4-4-\epsilon}} \right) .
\]

The first equality is actually a stronger result that contains power saving error. The second equality comes from that the second term is either smaller than the first term or the last term. Finally notice that $q^4 \leq X$, we get an upper bound in the form of

\[
N_q(S_5, X) \leq O \left(\frac{X}{q^{(4/15-\epsilon)}} \right).
\]
which will be convenient for our application later. □

In order to prove Theorem 1.3 over arbitrary number field K, we will need to prove the analogue of Theorem 4.4 over an arbitrary number field K. The setup is a bit more complex than the case over \mathbb{Q}. The variety that describes points with extra ramification is defined over K. Since $\rho : O_K \hookrightarrow \mathbb{R}^r \bigoplus \mathbb{C}^s$ is a full lattice, an O_K-point on the variety corresponds to a lattice point in $\mathbb{R}^{dn} \simeq (\mathbb{R}^r \bigoplus \mathbb{C}^s)^n$ where d is the degree of K/\mathbb{Q} and n is the dimension of the ambient space. Denote $\mathbb{R}^r \bigoplus \mathbb{C}^s$ by F in short. The scaling vector is $r = (r_1, \ldots, r_n)$ where $r_i \in F$ for each i. Define $| \cdot |_{\infty}$ to be the norm in F: $|v|_{\infty} = \prod_{1 \leq i \leq r} |v_i|_\infty \prod_{1 \leq j \leq s} |r_j|_\infty$ where $| \cdot |_\infty$ means standard norm in \mathbb{R} at real places and square of the standard norm in \mathbb{C} at complex places.

Theorem 4.6. Let B be a compact region in $F^n \simeq \mathbb{R}^{nd}$ with finite measure. Let Y_t for $1 \leq t \leq N$ be any closed subschemes of $h^n_{O_K}$ of codimension k_t, say $k = \max \{ k_t \mid 1 \leq t \leq N \}$. Let $r = (r_1, \ldots, r_n)$ be a diagonal matrix of non-zero elements where $|r_i|_{\infty} \geq \kappa$ for a certain absolute constant $\kappa > 0$. Let q be a square free integral ideal in O_K and m be a lower triangle unipotent transformation in $GL_n(F)$. Then we have

$$\sharp \{ a \in mrB \cap (O_K)^n \mid \forall 1 \leq t \leq N, a(\text{mod } p_t) \in Y_t(O_K/p_tO_K) \}$$

$$= O(\prod_{i=1}^n |r_i|_{\infty}^{-}\cdot C_{\Sigma_i, k_i} \cdot \max\{\frac{i\prod_{i=1}^k |r_i|_{\infty}^{-1}, \ldots, \frac{i\prod_{i=1}^{k-s} |r_i|_{\infty}^{-1}}{\prod_{i,s-k+i,0} \cdot \prod_{i} p_i^{k_i}}\})$$

(13.1)

where the implied constant depends only on B, Y and κ, and C depends on the degree of Y_t for all t and k. In particular, by letting $Y_t = Y$ and $q = \prod_{t} p_t$, we get

$$\sharp \{ a \in mrB \cap (O_K)^n \mid a(\text{mod } q) \in Y(O_K/qO_K) \}$$

$$= O(\prod_{i=1}^n |r_i|_{\infty}^{-}\cdot C_{\Sigma(q)} \cdot \max\{1, \frac{|q|}{|r_i|_{\infty}}, \frac{|q|^2}{|r_i r_j|_{\infty}}, \ldots, \frac{|q|^k}{\prod_{i=1}^k |r_i|_{\infty}}\})$$

(13.2)

where the implied constant depends only on B, Y and κ, and C depends on the degree of Y and k.

In order to prove this analogue, we need the following lemma on the regularity of shapes of the ideal lattices for a fixed number field K. Given an integral ideal $I \subset O_K$, we can embed it to F as a full lattice, with its covolume inside O_K to be the absolute norm $|O_K : I| = Nm_{K/\mathbb{Q}}(I)$, which we will write $|I|$ in short.

Lemma 4.7. Let K be a number field and $I \subset O_K$ be an arbitrary ideal. Given $\lambda = (\lambda_i) \in F = \mathbb{R}^r \bigoplus \mathbb{C}^s$, then

$$\sharp \{ a \in I \mid \forall i, |\sigma_i(a)|_i \leq |\lambda|_i \} = O\left(\frac{|\lambda|_{\infty}}{|I|}\right) + 1$$

where σ_i for $i = 1, \ldots, r + s$ are the Archimedean valuations of K and $| \cdot |_i$ is the usual norm in \mathbb{R} for real embeddings and square of the usual norm in \mathbb{C} for complex embeddings. The implied constant depends only on K.

Proof. Given I in the ideal class R in the class group of K, denote $[a]$ to be the equivalence class of non-zero a in I where $a \sim a'$ if $a = ua'$ for some unit u. Then we have $\sharp \{ [a] \in I \mid \| [a] \|_\infty \leq |I|X \} = \sharp \{ a \in O_K \mid a \in R^{-1}, |a| < X \} = O(X)$. (13.3)
To take advantage of the equality above, we cover the set $W := \{a \in I \mid \forall i, |\sigma_i(a)| \leq |\lambda_i|\} \setminus \{0\}$ by a disjoint union of subsets W_k

$$W = \bigcup_{k \geq 1} \{a \in I \mid \forall i, |\sigma_i(a)| \leq |\lambda_i|, \frac{|\lambda|_{\infty}}{2^{k-1}} \leq |a|_{\infty} \leq \frac{|\lambda|_{\infty}}{2^{k-1}}\} = \cup_k W_k. \quad (4.16)$$

For $a \in W_k$, we have that

$$\frac{|\lambda|_{\infty}}{2^{k}} \leq |\sigma_i(a)| \leq |\lambda_i|,$$

and if ua is also in W, it must be also in the same W_k since $|ua|_{\infty} = |a|_{\infty}$. So the magnitude of u is bounded as $2^{-k} \leq |\sigma_i(u)| \leq 2^k$ by the above inequality. By Dirichlet’s unit theorem, the units of K aside from roots of unity after taking logarithm form a lattice of rank $r+s-1$ satisfying $\sum_{i} \ln |\sigma_i(u)| = 0$, therefore

$$\sharp\{u \in O_K \mid |\ln |\sigma_i(u)|| \leq k\} = O(k^{r+s-1}).$$

So for each $[a] \in W_k$, the multiplicity is bounded by $O(k^{r+s-1})$, and the number of equivalence classes in W_k is bounded by

$$\sharp\{[a] \in I \mid |a|_{\infty} < \frac{|\lambda|_{\infty}}{2^{k-1}}\} \leq O(\frac{|\lambda|_{\infty}}{|I|} \cdot \frac{1}{2^{k-1}}). \quad (4.17)$$

Therefore

$$|W_k| \leq O(\frac{|\lambda|_{\infty}}{|I|}) \cdot \frac{k^{r+s-1}}{2^{k-1}}. \quad (4.18)$$

The total counting by summation over all k is

$$\sharp\{a \in I \mid \forall i, |\sigma_i(a)| \leq |\lambda_i|\} \setminus \{0\} = \sum_k |W_k| \leq O(\frac{|\lambda|_{\infty}}{|I|} \sum_k \frac{k^{r+s-1}}{2^{k-1}} \leq O(\frac{|\lambda|_{\infty}}{|I|}).$$

So the total counting after including the origin is

$$\sharp\{a \in I \mid \forall i, |\sigma_i(a)| \leq |\lambda_i|\} = O(\frac{|\lambda|_{\infty}}{|I|}) + 1.$$

A corollary of this lemma is that the shape of the ideals lattices inside O_K cannot be too skew. We will make this precise in the following lemma and prove it by a more direct approach.

Lemma 4.8. Given a number field K with degree d, for any integral ideal $I \subset O_K$, denote μ_i to be the successive minimum for the Minkowski reduced basis for I as a lattice in \mathbb{R}^d. Then μ_i is bounded by

$$\mu_i \leq O(|I|^{1/d})$$

for all $1 \leq i \leq d$. The implied constant only depends on the degree of K, the number of complex embeddings of K and the absolute discriminant of K.

Proof. Given an integral ideal I, and an arbitrary non-zero element $\alpha \in I$, we have $(\alpha) \subset I$, so $|((\alpha))| \geq |I|$. The length of α in \mathbb{R}^d is

$$\sqrt{|\alpha|^2 + \cdots + |\alpha|_{r+1}^2 + \cdots + |\alpha|_{r+s}^2} \geq \sqrt{d(\prod_{1 \leq i \leq r} |\alpha_i|^2 \prod_{r+1 \leq i \leq r+s} \frac{|\alpha_i|^2}{4})^{1/d}} \geq \sqrt{d^{2-s/d}|((\alpha))|^{1/d}} \geq \sqrt{d^{2-s/d}|I|^{1/d}}. \quad (4.19)$$
The first inequality comes from the fact that the arithmetic mean is greater than the geometric mean. While Minkowski’s first theorem guarantees that \(\mu_1 \leq O(|I|^{1/d}) \), we have also shown that \(\mu_1 \) could be bounded from below by \(O(|I|^{1/d}) \). This amounts to saying that the first minimum \(\mu_1 \) of Minkowski’s reduced basis is exactly at the order of the diameter \(O(|I|^{1/d}) \). Moreover Minkowski’s second theorem states that

\[
\prod_{1 \leq i \leq d} \mu_i \leq 2^d \text{Disc}(K)^{1/2}|I|,
\]

therefore for all \(i \leq d \),

\[
\mu_i \leq O(|I|^{1/d})
\]

where the implied constant only depends on the degree of \(d \) of \(K/\mathbb{Q} \), the number of complex embeddings \(s \) and the absolute discriminant \(\text{Disc}(K) \).

\begin{proof}[Remark 4.9] By Lemma 4.7, if we pick \(\lambda \) with \(|\lambda|_\infty = O(|I|) \) and \(\lambda_{|i|} = O(|I|^{1/d}) \) for real places and \(|\lambda|_{|s|} = O(|I|^{2/d}) \) for complex places, we get a square box with side length \(O(|I|^{1/d}) \) in \(\mathbb{R}^d \). The first term in Lemma 4.7 could be bounded by \(O(|\lambda|_\infty) = O(1) \), therefore among all square boxes with identical side length, we can see that the largest such box containing only one lattice point, i.e. the origin, have side length as large as \(C|I|^{1/d} \) for some constant \(C \). Indeed, if such largest box has too small side length, we will get too many lattice points inside a square box with side length in the order of \(|I|^{1/d} \). Therefore the first successive minimum \(\mu_1 \) is greater than the upper bound.
\end{proof}

On the other hand, he Minkowski’s reduced basis generates the whole lattice with covolume \(|I|D_K^{1/2} \), so the angle among the vectors in the basis is away from zero. This basically means that the Minkowski’s reduced basis, among the family of all integral ideals of \(K \), all look like square boxes, and we can find a fundamental domain within the square box. This proves the following corollary.

Corollary 4.10. Given a number field \(K \) with degree \(d \), for any integral ideal \(I \subseteq O_K \) and any residue class \(\bar{c} \in O_K/IO_K \), we can find a representative \(c \in O_K \) such that each

\[
|c_i| \leq O(|I|^{1/d})
\]

where \(c_i \) is the \(i \)-th coordinate in \(\mathbb{R}^d \) for all \(1 \leq i \leq d \). The implied constant depends only on \(K \).

Proof of Theorem 4.6 The case where \(k = 0 \) is trivial since the number of lattice points in the box is \(O(\prod_{i=1}^n |r_i|_\infty) \). It suffices to prove the statement for the initial case when \(k = 1 \) and \(n = 1 \). The induction procedure works similarly with Theorem 4.4.

Let’s look at one of the initial case \(\left\{ \prod_{t=1}^n |r_t|_\infty \right\} \) for example. Let’s say for those \(t \) with \(k_t = 1 \), the scheme \(Y_t \) is cut out by \(f_t(x) \). For each \(f_t(x) \), the number of solution for \(f_t(\mod p_t) \) is bounded by \(C = \deg(f) \). Denote \(q = \prod_t p_t^{k_t} \). Therefore inside \(O_K/qO_K \), the number of residue classes that satisfy each \(t \)-th condition is bounded by \(C^{\sum_t k_t} \). To answer the counting question, the set of such lattice points \(a \in O_K \) is a union of \(C^{\sum_t k_t} \) translations of lattices: translation of the lattice \(q \) by \(c \) (the new lattice is \(q + c \)) where \(c \) is a certain lift of \(\bar{c} \in O_K/qO_K \) and \(\bar{c} \) is one solution of \(f_t(\mod p_t) \) for all \(t \) with \(p_t|q \).

Lemma 4.7 states that for arbitrary \(r \in F \),

\[
\sharp\{a \in rB \cap O_K \mid a \in 0 + q\} = O(\max\left\{ |r|_\infty, 1 \right\})
\]
when B is the unit square in F. It follows that the equality is true for any general compact set B, since we could cover the new set B by a bigger square, and the effect on the implied constant by doing this will only depend on B. For other nontrivial translations by a root c, we have
\begin{equation}
\tau\{a \in rB \cap O_K \mid a \in e + q\} = \tau\{a \in (rB - c) \cap O_K \mid a \in q\}.
\end{equation}

So it is equivalent to consider the number of lattice points in a translation of a square box rB centered at the origin. We could cover B by 2^n sub-boxes B_s which is defined by sign in each R space (consider complex embeddings as two copies of R). Then $rB - c$ could be covered by $rB_s - c$. It suffices to count lattice points in each $rB_s - c$ and add them up. For each s, if there exists one lattice point $P \in rB_s - c$, then we can cover $rB_s - c$ by $P + 2rB_s$, and the number of lattice points in $2rB_s + P$ is equivalent to that in $2rB_s$ which is
\begin{equation}
\tau\{(P + 2rB_s) \cap q\} = \tau\{2rB_s \cap q\} \leq O(\max \{ |r|, q \} , 1)).
\end{equation}

If there are no lattice points in B_s, then there is nothing to add. Altogether we have that for any residue class \bar{c} and any compact set B,
\begin{equation}
\tau\{a \in rB \cap O_K \mid a \in e + q\} \leq O(2^n \max \{ |r|, q \} , 1) = O(\max \{ |r|, q \} , 1)).
\end{equation}

Here the implied constant depends only on B and K. Therefore by adding up counting for all \bar{c}, we get an upper bound
\begin{equation}
O(1) \cdot C_{\Sigma, k_s} \cdot \max\{1, \frac{|r|}{\prod_k p_k q} \}.
\end{equation}

This finishes the proof for the case $k = 1, n = 1$. \hfill \Box

Finally, based on Theorem 4.6 we can prove Theorem 1.3 over a number field K.

Proof of Theorem 1.3 over K. We will follow the notation [BSW17] in this proof. Counting S_n-number fields for $n = 3, 4, 5$ over a number field K is different from that over \mathbb{Q} mostly in two aspects.

Firstly, the structure of finitely generated O_K-module is more complex than that of \mathbb{Z}, therefore the parametrization of S_n number fields over K will involve other orbits aside from $G(O_K)$-orbits of $V(O_K)$ points. Actually finitely generated O_K-modules with rank n are classified in correspondence to the ideal class group $Cl(K)$ of K. So for each ideal class β, we get a lattice L_β corresponding to S_n extensions L with O_L corresponding to β. We just need to count the number of orbits in L_β under the action of Γ_β where Γ_β is commensurable with $G(O_K)$ and L_β is commensurable with $V(O_K)$. See section 3 in [BSW17] for more details.

Secondly, the reduction theory over a number field K is slightly different in that the description of fundamental domain requires the introduction of units, and this effect of units is especially beneficial for summation over fundamental domain. The most significant difference is at the description of the torus. Originally over \mathbb{Q}, we have $G(\mathbb{R})/G(\mathbb{Z}) = NACA$ [Bha10] where A is an l-dimensional torus ($l = 7$ for S_5) embedded into $GL_n(\mathbb{R})$ ($n = 40$ for S_5) as diagonal elements
\begin{equation}
T(x) = \{ t(s_1, \ldots, s_i) \in T(\mathbb{R}) = G_{m}(\mathbb{R}) \mid \forall i, s_i \geq c \}.
\end{equation}

Given a number field K, recall that $\rho : O_K \rightarrow \mathbb{F} = \mathbb{R}^{r} \bigoplus \mathbb{C}^{n}$ is the embedding of O_K as a full lattice in \mathbb{R}^{d}. Then A could be described as a subset of
\begin{equation}
T(c, c') = \{ t = t(s_1, \ldots, s_i) \in T(\mathbb{F}) = G_{m}(\mathbb{F}) \mid \forall i, |s_i| \geq c, \forall j, k, \ln \frac{|s_j|}{|s_k|} \leq c' \}.
\end{equation}
Here $|s_i| \leq O(|s_i|_k)$ for all j, k guarantees that $|s_i|_j \sim |s_i|_k$, thus $|s_i|_v \sim |s_i|_\infty^{1/(r+s)}$. Therefore, if we have a bound that $|s_i|_\infty \leq A$, then we can get the bound $|s_i|_v \leq O(A^{1/r})$. See section 4 of [BSW17] for more details.

Recall that we need to compute

$$N(S; X) = \frac{1}{M_i} \int_{g \in F} \sharp\{x \in S^{\text{trr}} \cap gB \cap V_F^{(i)} : |\text{Disc}(x)|_\infty < X\} dg$$

where $V_F^{(i)}$ is a subspace of V_F with a certain signature, and B is a compact ball in the space V_F that is invariant under the action of the orthogonal group K. By Theorem 4.6, the integrand is

$$\sharp\{x \in S^{\text{trr}} \cap gB \cap V_F^{(i)} : |\text{Disc}(x)|_\infty < X\} \leq \sharp\{x \in m\lambda B \cap L | x (\text{mod} \ q) \in Y(Z/qZ)\} = O(\frac{|\lambda|^n}{|q|^k}) \cdot C^{\omega(q)} \cdot \max\{1, \frac{|q|}{|\lambda t_i|_\infty}, \frac{|q|^2}{|\lambda^2 t_i t_j|_\infty}, \ldots, \frac{|q|^k}{\prod_{i=1}^k t_i|_\infty}\},$$

Here in order to present the result in a similar form with that over Q, for each $\lambda \in \mathbb{R}^+$ we denote λ to be the diagonal matrix such that $|\text{Disc}(\lambda v)|_\infty = |\lambda|_\infty^n |\text{Disc}(v)|_\infty$ where $n = 40$ for S. The first case is to compute β with non-zero $a_{1/2}$ is away from zero and $|a|_\infty$ could be bounded from below by κ, so we would only integrate over

$$D_\lambda = \{t = t(s_i) \in T(c, c') | |s_i^3 s_2 s_3 s_4 s_5 s_6 s_7^2| \leq \lambda/\kappa\}.$$

The integral over $F = \mathbb{R}^d$ gives the same result as over Q since

$$\int_{O(1)} |s_i|_\infty^k ds_i^X \leq \prod_{1 \leq i \leq r} \int_{O(1)} O(A^{1/(r+s)}) s_i^k ds_i^X \prod_{r+1 \leq i \leq r+s} \int_{O(1)} O(A^{1/(r+s)}) r_i^{2(u-1)} dr_i = O(A^u).$$

So we will end up with the same result over K.

For fields corresponding to other ideal class $\beta \in \text{Cl}(K)$, we can similarly compute the average number of lattice points in F_v for $v \in B$ with bounded discriminant. Denote $F_\beta = \Gamma_\beta \setminus G(F)$. By [BSW17], we can cover F_β by finitely many $g_i F$ where $g_i \in G(O_K)$ are representatives of $G(O_K)/(G(O_K) \cap \Gamma_\beta)$. Let’s call $\mathcal{D}_i = F_\beta \cap g_i F$, then we just need to sum up

$$\frac{1}{M_i} \int_{g \in \mathcal{D}_i} \sharp\{x \in S^{\text{trr}} \cap gB \cap V_F^{(i)} : |\text{Disc}(x)|_\infty < X\} dg \\
\leq \frac{1}{M_i} \int_{g \in g_i F} \sharp\{x \in S^{\text{trr}} \cap gB \cap V_F^{(i)} : |\text{Disc}(x)|_\infty < X\} dg \\
\leq \frac{1}{M_i} \int_{g \in F} \sharp\{x \in g_i^{-1} S^{\text{trr}} \cap gB \cap V_F^{(i)}\} dg.
$$

As in [BSW17] section 3,

$$\mathcal{L}_\beta := V_\infty(K) \cap \beta^{-1} \prod_{p|\infty} V(O_p) \prod_{p|\infty} V(F_p)$$

where β is a representative of the double coset $c_1 S = (\prod_{p|\infty} G(O_p)) \backslash G(k_f) / G(K)$. Here k_f is the restricted product of K_p^\times for all finite places p. So given a class β, we can choose a
representative such that β_p is the identity element in $G(O_p)$ except at a finite set of places S_β. At $p \in S_\beta$, β_p is in $G(K_p)$. Given $v \in \mathcal{L}_\beta$, we have

$$v_p \in \beta_p^{-1}V(O_p).$$

Since β_p^{-1} can be regarded as a linear action, there must exist r large enough such that

$$v_p\pi^r \in \beta_p^{-1}\pi^rV(O_p) \in V(O_p)$$

and $(\pi^r) = (a_p)$ is a principle integral ideal in O_K where π is a uniformizer for O_p. Glue all the a_p and we get $a = \prod_{p \in S_\beta} a_p$. By the way it is defined, we have that aN_l is in O_K and $a \in O_p^*$ at $p \notin S_\beta$. So for p outside S_β, $v \in \mathcal{L}_\beta$ is in $Y(O_K/p)$ if and only if $av \in O_K$ is in $Y(O_K/p)$. Therefore we can consider aN_l inside O_K instead and do not lose the information of ramification at all but finitely many places. Since there are only finitely many ideal classes and therefore the union $S = \cup_\beta S_\beta$ contains finitely many primes, it will not affect the form of the uniformity estimate but only the implied constant. From now on, we will assume \mathcal{L}_β to be in O_K.

In [4.24], recall that the set S^{irr} is the set of irreducible points that are totally ramified points at q in \mathcal{L}_β. If q is a square free integral ideal away from S and $x \in S^{irr}$ satisfies $x \in O_K$ and $x \in Y(O_K/q)$, then $g_i^{-1}v \in O_K$ and $g_i^{-1}v \in g_i^{-1}Y(O_K/q)$. Denoting $g_i^{-1}Y = Y_i$, then it suffices to count

$$\sharp \{x \in g_i^{-1}\mathcal{L}_\beta \cap gB \cap Y_i(O_K/q)\}. \quad (4.25)$$

Since $g_i^{-1}Y$ only differs with Y by a linear transformation on coordinates, Y_i has the same codimension. Apply Theorem 4.6 to get the same estimates. To consider arbitrary square free ideal $q = q_1q_2$ with q_2 containing the involved factors in S, we can consider the number of orbits that are ramified at q_1 as an upper bound, and get the estimate in [4.12]

$$O\left(\frac{X}{q_1^{1-\epsilon}}\right) + O\left(X^{(36+4/3)/40 q_1}\right) \leq \left(\prod_{p \in S} |p|^4\right) \cdot \left(O\left(\frac{X}{q_1^{1-\epsilon}}\right) + O\left(X^{(36+4/3)/40 q_1}\right)\right).$$

The extra product over S only depends on k, so we also get the expected upper bound for arbitrary square free ideal q.

\[\Box\]

4.3 Local uniformity for Abelian extensions

In this subsection, we will prove perfect local uniformity estimates on ramified abelian extension for all abelian group A over arbitrary number field k with arbitrary ramification type.

It has been proved [Wr189] that Malle’s conjecture is true for all abelian groups over any number field k.

Theorem 4.11. Let A be a finite abelian group and k be a number field, the number of A-extensions over k with the absolute discriminant bounded by X is

$$N(A, X) \sim CX^{1/a(A)}(\ln X)^{b(k, A)-1}.$$

We will need to prove a uniformity estimate for A extensions with certain local conditions. For an arbitrary integral ideal q in O_k, define $N_q(A, X) = \sharp\{K \mid \text{Disc}(K/k) \leq X, \text{Gal}(K/k) = A, q \mid \text{disc}(K/k)\}$.

Theorem 4.12. Let A be a finite abelian group and k be a number field, then

$$N_q(A, X) \leq O(C^{\omega(q)}(\frac{X}{|q|})^{1/a(A)}(\ln X)^{b(k, A)-1}$$

for an arbitrary integral ideal q in O_k, where C and the implied constant depends only on k.

28
Proof. We will follow the notation and the language of \[\text{Woo10}\] to describe abelian extensions. To get an upper bound on \(A\)-extensions, it suffices to bound on the number of continuous homomorphisms from the idèle class group \(C_k \rightarrow A\). Similarly, for \(A\)-extensions with certain local conditions, it suffices to bound on the number of continuous homomorphisms from the idèle class group \(C_k \rightarrow A\) satisfying certain local conditions.

Let \(S\) be a finite set of primes such that \(S\) generates the class group of \(k\), including infinite primes and possibly wildly ramified primes, i.e., primes above the prime divisors of the order of the abelian group \(|A|\). Denote \(J_k\) to be the idèle group of \(k\), and \(J_S\) to be the idèle group with component \(O^n_S\) for all \(v \not\in S\) and \(O^S_S\) to be \(k^n \cap J_S\). By lemma 2.8 in \[\text{Woo10}\], the idèle class group \(C_k = J_k/k^*/\) isomorphic to \(J_S/O^S_S\). Therefore to bound the number of continuous homomorphisms \(C_k \rightarrow A\), we can choose to bound the number of continuous homomorphisms \(J_S \rightarrow A\). The Dirichlet series for \(J_S \rightarrow A\) with respect to absolute discriminant is an Euler product, see \[\text{Woo10}\] section 2.4,\n
\[
F_{S,A}(s) = \prod_{p \in S} \left(\sum_{\rho_p \rightarrow A} |p|^{-d(\rho_p) s} \right) \prod_{p \not\in S} \left(\sum_{\rho_p : O^p_S \rightarrow A} |p|^{-d(\rho_p) s} \right) = \sum_{n} \frac{\alpha_n}{n^s} \tag{4.26}
\]

where \(d(\rho_p)\) is the exponent of \(p\) in the relative discriminant and can be determined by the tame inertia group at \(p\), which is the image of \(O^p_S\) in \(A\). Lemma 2.10 \[\text{Woo10}\] shows that \(F_{S,A}(s)\) has exactly the right most pole at \(s = \frac{1}{|A|}\) with order \(b(k,A)\), the same as the Dirichlet series for \(A\)-extensions.

The generating series \(F_{S,A}(s)\) is a nice Euler product: for all \(p\)-factor there is a uniform bound \(M\) on the magnitude of coefficient \(a_{\rho_p}\) and a uniform bound \(R\) on \(s\) such that \(a_{\rho_p} \) zero for \(r > R\). Denote the counting function of \(F_{S,A}(s)\) by \(B(X) = \sum_{n \leq X} a_n\). Then for a certain integer \(q = \prod_i p_i^{a_i}\), we have

\[
B_q(X) = \sum_{q|d|q_0} a_d \sum_{k,(d,k) = 1, dk < X} a_k B(\frac{X}{d}) \leq \sum_{q|d|q_0} M^{|\omega(q)|} \left(\frac{X}{d} \right)^{1/a(A)} \ln^{b(A)-1} X
\]

\[
= M^{|\omega(q)|} X^{1/a(A)} \ln^{b(A)-1} X \sum_{q|d|q_0} \frac{1}{d^{1/a(A)}}
\]

\[
\leq (MR)^{|\omega(q)|} X^{1/a(A)} \ln^{b(A)-1} X \frac{1}{q^{1/a(A)}} = O(C^{\omega(q)}) \left(\frac{X}{q} \right)^{1/a(A)} \ln^{b(A)-1} X.
\]

We have \(N_q(A,X)\) bounded by \(B_q(X)\) for an arbitrary integral ideal \(q\). \(\square\)

5 Proof of the Main Theorem

In this section, we prove our main results Theorem \[\text{1.1}\]. The idea of this proof is similar with that in \[\text{BW08}\]. Basically we expect that \(\text{Disc}(KL)\) is approximately the product \(\text{Disc}(K)^m \text{Disc}(L)^3\) with only differences at places where both \(K\) and \(L\) are ramified. So we define a new invariant \(\text{Disc}_Y(KL)\) which only consider those differences at small primes, and aim to prove that counting by \(\text{Disc}_Y(KL)\) will finally converge to the true counting. Before we start the proof, we give the following lemma that states exactly the inequality we need in the proof. This inequality includes all useful data we have developed before. It measures how good local uniformity we proved is by comparing to how much we need. The latter is derived by group theoretic computation in section 2.4.

Lemma 5.1. For \(n = 3, 4, 5\), let \(A\) be an abelian group satisfying the corresponding condition on \(m = |A|\) in Theorem \[\text{1.1}\]. Then \(\forall c \in A\) and \(d \in S_n\),

\[
\text{ind}(d,c)/m - \text{ind}(d) + r_d \geq 1,
\]

\[
\tag{5.1}
\]
where the local uniformity $O(X/|q|^{r_d-ε})$ with exponent r_d holds for S_n degree n extensions with the tame inertia generator at $p|q$ equal to d up to conjugacy.

Proof. This can be checked by Lemma 2.5, 2.6 and 2.7 with Theorem 4.1, 4.2 and 1.3.

Then we are going to prove the main results.

Proof of Theorem 1.1 We will describe $S_n \times A$ extensions by pairs of S_n degree n field K and A-extensions L,

$$N(S_n \times A, X) = \sharp\{(K, L)|\text{Gal}(K/k) \simeq S_n, \text{Gal}(L/k) \simeq A, \text{Disc}(KL) < X\}.$$

We will write $N(X)$ for short and omit the conditions $\text{Gal}(K/k) \simeq S_n$ and $\text{Gal}(L/k) \simeq A$ when there is no confusion. The equality holds since S_n and odd abelian group have no isomorphic quotient.

Next we will prove this result by three steps.

1. **Estimate pairs by Disc(O_KO_L).**

 By Theorem 2.1 we can get a lower bound for $N(S_n \times A, X)$ by counting the number of pairs by Disc(O_KO_L). Denote $|A| = m$, then there exists C_0 such that

 $$\begin{align*}
 N(S_n \times A, X) &\geq \sharp\{(K, L)|\text{Gal}(K/k) \simeq S_n, \text{Gal}(L/k) \simeq A, \text{Disc}(O_KO_L) = \text{Disc}(K)^m \text{Disc}(L)^n < X\} \quad (5.2) \\
 &\sim C_0 X^{1/m}.
 \end{align*}$$

 The last line follows from Lemma 3.2. We can get a better understanding of the constant C_0 in view of Dirichlet series. Let $f(s)$ be the Dirichlet series of S_n degree n extensions with absolute discriminant, and $g(s)$ be the Dirichlet series of A-extensions with absolute discriminant. Then the Dirichlet series for pairs $\{(K, L)\}$ with respect to $\text{Disc}(K)^m \text{Disc}(L)^n$ is $f(ms)g(ns)$. The analytic continuation and pole behavior of f and g are both well studied [LT13, WR89, WOO10].

 It has been shown that $f(s)$ has the right most pole at $s = \frac{1}{\text{Ind}(S_n)} = 1$ and $g(s)$ has the right most pole at $s = \frac{1}{\text{Ind}(A)}$. Recall that for arbitrary abelian group A, the quantity $\frac{m}{\text{Ind}(A)} = p$, where p is the minimal prime divisor of $|A|$, so $\frac{1}{m} > \frac{1}{n \text{Ind}(A)}$. Therefore the right most pole of $f(ms)g(ns)$ is at $s = \frac{1}{m}$, and the order of the pole is exactly the order of the pole of $f(s)$ at $s = 1$, which is 1. By Tauberian Theorem [VAR83],

 $$\liminf_{X \to \infty} \frac{N(S_n \times A, X)}{X^{1/m}} \geq (\text{Res}_{s=1} f) \cdot g\left(\frac{n}{\text{Ind}(S_n)} \cdot m\right) = (\text{Res}_{s=1} f) \cdot g\left(\frac{n}{m}\right). \quad (5.3)$$

2. **Estimate pairs by Disc$_Y(KL)$.**

 Define Disc$_Y$ to approximate Disc as follows:

 $$\text{Disc}_Y(KL) = \begin{cases} \\
 \text{Disc}_p(KL) & |p| \leq Y \\
 \text{Disc}_p(KL)^m \text{Disc}_p(L)^n & |p| > Y.
 \end{cases} \quad (5.4)$$

 Recall that Disc$_p(\cdot)$ means the absolute norm of p-factor in the relative discriminant, while Disc$_Y$, as described above, is an approximation of Disc. The notation would be distinguished by whether the lower index is capital or little letter.

 Define $N_Y(X) = \sharp\{(K, L)|\text{Disc}_Y(KL) < X\}$. Since Disc$_Y(KL) \geq \text{Disc}(KL)$, as Y gets larger, we get $N_Y(X) \leq N(X)$ which is an increasingly better lower bound for $N(X)$.

30
We explain here the notation we will use. Let Σ_1 be a set containing, for each $|p| < Y$, a local étale extension over k_p of degree n. Let Σ_2 be a set containing, for each $|p| < Y$, a local étale extension of degree m. We can think of Σ_1 as a specification of local condition for S_n-extensions at all $|p| < Y$, and Σ_2 as the specification of local conditions for A-extensions at all $|p| < Y$. Then let $\Sigma = (\Sigma_1, \Sigma_2)$ contain a pair of specification for each p with $|p| < Y$. There are finitely many local étale extensions of degree n and m, so there are finitely many different Σ’s and thus finitely many Σ’s for a fixed Y. We will write $K \in \Sigma_1$ if, for each $|p| \leq Y$, the local étale algebra $(K)_p$ is in Σ_1. Similarly we will write $L \in \Sigma_2$ if, for each $|p| < Y$, the local étale algebra $(L)_p$ is in Σ_2. We will write $(K, L) \in \Sigma$ if $K \in \Sigma_1$ and $L \in \Sigma_2$.

For each Σ_1, we know counting result of S_n degree n extensions \cite{BSW17} with finitely many local conditions

$$N_{\Sigma_1}(S_n, X) = \sharp\{K | \text{Gal}(K/k) \simeq S_n, K \in \Sigma_1\},$$

and similarly for abelian extensions with Σ_2 as the specification \cite{Mil85, Wri89, Woo10}.

Given a fixed Y, we can relate $\text{Disc}_Y(KL)$ and $\text{Disc}(KL)$ for pairs $(K, L) \in \Sigma$ as follows,

$$\begin{align*}
\text{Disc}_Y(KL) &= \prod_{|p| \leq Y} \text{Disc}_p(KL) \prod_{|p| > Y} \text{Disc}_p(K)^m \text{Disc}_p(L)^n \\
&= \text{Disc}(K)^m \text{Disc}(L)^n \prod_{|p| \leq Y} \text{Disc}_p(KL) \text{Disc}_p(K)^{-m} \text{Disc}_p(L)^{-n} \\
&= \frac{\text{Disc}(K)^n \text{Disc}(L)^n}{d_{\Sigma}}
\end{align*}$$

(5.5)

where d_{Σ} is a factor only depending on Σ (see section 2 for full discussion). Therefore for a fixed Y and Σ, the relation $\text{Disc}_Y(KL) \leq X$ is equivalent to $\text{Disc}(K)^m \text{Disc}(L)^n \leq d_{\Sigma}X$ for $(K, L) \in \Sigma$. Apply Lemma 3.2 to $N_{\Sigma_1}(S_n, X^{1/m})$ and $N_{\Sigma_2}(A, X^{1/n})$, we show that there exists a constant C_Y such that

$$\lim_{X \to \infty} N_Y(X) X^{1/m} = C_Y. \quad (5.6)$$

For each Y, the counting $N_Y(X) \leq N(X)$ give a lower bound, therefore

$$\lim_{Y \to \infty} \lim_{X \to \infty} N_Y(X) X^{1/m} = C_Y \leq \lim_{X \to \infty} \inf_{X \to \infty} N(X) X^{1/m}. \quad (5.7)$$

By definition of N_Y, the constant C_Y is monotonically increasing as Y increases and will be shown to be uniformly bounded in the next step. So this limit above in the middle does exist and gives a lower bound on $N(X)$.

3. **Bound** $N(X) - N_Y(X)$

Our goal is to prove the other direction of the inequality \cite{5.7}, i.e. to prove

$$\lim_{Y \to \infty} C_Y \geq \sup_{X \to \infty} N(X) X^{1/m}, \quad (5.8)$$

and thus

$$\lim_{X \to \infty} N(X) X^{1/m} = \lim_{Y \to \infty} \lim_{X \to \infty} N_Y(X) X^{1/m} = \lim_{Y \to \infty} C_Y. \quad (5.9)$$

To get an upper bound of $N(X)$ via $N_Y(X)$, we need to bound on $N(X) - N_Y(X)$. It suffices to show the difference is $o(X^{1/m})$.

By definition, the difference is exactly the following

$$N(X) - N_Y(X) = \sharp\{K, L | \text{Disc}(KL) < X < \text{Disc}_Y(KL)\}$$

$$= \sum_{\Sigma'} \sharp\{K, L \in \Sigma' | \text{Disc}(KL) < X < \text{Disc}_Y(KL)\} \quad (5.10)$$

31
where we explain the local condition Σ' as following.

Each Σ' specifies: 1) a finite set of primes S; 2) for each $p \in S$ and $p | n!m$ (meaning p is possibly wildly ramified in either K or L), a pair of ramified local \éta-algebras (h_p, g_p) over k_p at p of degree n and m respectively; 3) for each $p \in S$ and $p \nmid n!m$, a pair of inertia generator (h_p, g_p) with $h_p \in S_n$ and $g_p \in A$ up to conjugacy. We will write $(K, L) \in \Sigma'$ if: 1) for each $p \in S$, the local \éta-algebras $(K)_p = h_p$ (or $I_p(K) = \langle h_p \rangle$) and $(L)_p = g_p$ (or $I_p(L) = \langle g_p \rangle$) for K and L; 2) for each $p \not\in S$, K and L are not simultaneously ramified at p, i.e., the set S contains exactly the primes where both K and L are ramified. So Σ' gives a specification of local conditions for (K, L) at infinitely many places. By only remembering the local specification $\{h_p \mid p \in S\}$ on S_n extensions, we will write $K \in \Sigma'$ if $(K)_p = h_p$ (or $I_p(K) = \langle h_p \rangle$) for all $p \in S$. Similarly, for abelian extension L, we will write $L \in \Sigma'$ if $(L)_p = g_p$ (or $I_p(L) = \langle g_p \rangle$) for all $p \in S$. Denote $\exp(\cdot)$ to be the corresponding exponent of p in the relative discriminant.

By section 2 at tame place, $\exp(\cdot)$ is equal to $\text{ind}(g)$ where g is the generator of the inertia group I_p; at possibly wildly ramified place, the exponent $\exp(\cdot)$ could be determined by $(K)_p$ or $(L)_p$. We will write $\exp(h_p, g_p)$ to denote the exponent of $\text{Disc}_p(KL)$ where $(K)_p = h_p$ (or $I_p(K) = \langle h_p \rangle$) and $(L)_p = g_p$ (or $I_p(L) = \langle g_p \rangle$). This quantity is completely determined by h_p and g_p by Theorem 2.4. Given a fixed Σ', by definition of $\exp(h_p, g_p)$, we can relate $\text{Disc}(KL)$ for $(K, L) \in \Sigma'$ to the product as follows

$$\text{Disc}(KL) = \text{Disc}(K)^m \text{Disc}(L)^n \prod_{p \in S} \left\lfloor \frac{\exp(h_p, g_p) - m \exp(h_p) - n \exp(g_p)}{d_{\Sigma'}} \right\rfloor.$$

(5.11)

So the summand indexed by Σ' in (5.10) is

$$\frac{\chi\langle (K, L) \in \Sigma'\mid \text{Disc}(KL) < X \leq \text{Disc}_Y(KL) \rangle}{X} \leq \frac{\chi\langle (K, L) \in \Sigma'\mid \text{Disc}(KL) < X \rangle}{X} = \frac{\chi\langle (K, L) \in \Sigma'\mid \text{Disc}(K)^m \text{Disc}(L)^n < X d_{\Sigma'} \rangle}{X} = \frac{\chi\langle (K, L) \in \Sigma'\mid \prod_{p \in S} \text{Disc}_p(K)^m \text{Disc}_p(L)^n < X \prod_{p \in S} \left\lfloor \frac{\exp(h_p, g_p)}{d_{\Sigma'}} \right\rfloor \rangle}{X}.$$

(5.12)

If all primes in S are smaller than Y, then $\text{Disc}(KL) = \text{Disc}_Y(KL)$, therefore only Σ' with $\prod_{p \in S} |p| > Y$ is non-zero. Denote $\prod_{p \in S} \text{Disc}_p(K)$ by $\text{Disc}_{\text{res}}(K)$. Given Σ' and a conjugacy class d in S_n, define $q_d = \prod_{p \in S, h_p = d} p$ where \prod' means the product is taken only over tamely ramified p in S. Then we can bound the number of $K \in \Sigma'$ with bounded $\text{Disc}_{\text{res}}(K)$ as follows

$$\frac{\chi\langle K \mid K \in \Sigma', \text{Disc}_{\text{res}}(K) \leq X \rangle}{X} = \frac{\chi\langle K \mid K \in \Sigma', \text{Disc}(K) \leq X \prod_{p \in S} \left\lfloor \frac{\exp(h_p)}{d_{\Sigma'}} \right\rfloor \rangle}{X} = O\left(\prod_{d} |q_d|^{-r_d} \prod_{p \in S} \left\lfloor \frac{\exp(h_p)}{d_{\Sigma'}} \right\rfloor X \right) = O\left(\prod_{d} |q_d|^{-r_d + \text{ind}(d)} X \right),$$

(5.13)

where we apply Lemma 5.1 for the second equality. We will show why we could ignore wildly ramified primes at this step. There are only finitely many primes that could possibly become

32
wildly ramified and there are finitely many local étale algebras over \(k_p \) with bounded degree at each \(p \), therefore the constant \(|p|^{\exp(h_p)} \) is uniformly bounded at all possibly wildly ramified primes \(p \). Thus the product of \(|p|^{\exp(h_p)} \) over all possibly wildly ramified primes \(p \) is also uniformly bounded by an absolute constant, say by \(C \). So we could get an upper bound of the second line by considering \(\text{Disc}(K) \leq CX \prod q |q|^{\text{ind}(d)}. \) Similarly, we could bound the number of \(A \) extension with bounded \(\text{Disc}_{res}(L) \) as follows

\[
\#\{L \mid L \in \Sigma', \text{Disc}_{res}(L) \leq X\} \\
= \#\{L \mid L \in \Sigma', \text{Disc}(L) \leq X \prod_{p \in S} |p|^{\exp(g_p)}\} \\
= O_\epsilon \left(\prod_{p \in S} |p|^{\exp(g_p)} \right) X^{1/a(A)} \ln(b(A)} X \\
= O_\epsilon \left(\prod_{p \in S} |p|^\epsilon \right) X^{1/a(A)} \ln(b(A)} X,
\]

where for the second inequality we apply Theorem 4.3 since \((L)_p = g_p \) (or \(I_p(L) = (g_p) \)) implies that \(p^{\exp(g_p)} \cdot \text{disc}(L) \). Now apply Lemma 3.2 to distribution functions of \(\text{Disc}_{res}(K)^m \) (obtained by (5.13) and \(\text{Disc}_{res}(L)^n \) (obtained by (5.14)) in (5.12), we get

\[
\#\{(K, L) \in \Sigma' | \text{Disc}_{res}(K)^m \text{Disc}_{res}(L)^n < \prod_{p \in S} |p|^{\exp(h_p, g_p)}\} \\
\leq O_\epsilon \left(\prod_{d} |q_d|^{\epsilon r_d + \text{ind}(d) + \epsilon} \right) \left(\prod_{p \in S} |p|^{\exp(h_p, g_p)} \right)^{1/m} \\
\leq O_\epsilon \left(\prod_{d} |q_d|^{\epsilon r_d + \text{ind}(d) + \epsilon} \prod_{p \in n/d} |p|^{-\text{ind}(d, g_p)}/m \right) X^{1/m} \\
\leq O_\epsilon \left(\prod_{d} |q_d|^{\delta + \epsilon} \right) X^{1/m},
\]

where for the last second inequality we plug in \(\exp(h_p, g_p) = \text{ind}(d, g_p) \), and for the last inequality we apply Lemma 5.1 and get \(\delta = \max_{d \in S_n, c \in A} (-r_d + \text{ind}(d) - \text{ind}(d, c)/m) < -1 \).

For each fixed \(\Sigma' \), a list of \((q_d) \) of relatively prime ideals of \(k \), over all conjugacy class \(d \) in \(S_n \), are determined by \(\Sigma' \). Conversely, for each list \((q_d) \), we will show that there are at most \(O_\epsilon (\prod_{d} q_d)^\epsilon \) many \(\Sigma \)'s giving the list \((q_d) \). Let \(M_p \) be the upper bound on the number of pairs \((h_p, g_p) \) of ramified local étale algebra over \(k_p \) with degree \(n \) and \(m \) respectively, and let \(M \) be \(\prod_p M_p \) over all \(p \) with \(p \in \mathbb{N} \). For each \(q_d \), the number of options for \(\Sigma' \) at \(p | q_d \) is bounded by \((n!m)^{-\epsilon q_d} \), therefore the total number of options for \(\Sigma' \) is bounded by \(M(n!m)^{-\epsilon \sum q_d} = O(\prod_{d} q_d)^\epsilon \).

Finally, we can bound the difference (5.10) as follows

\[
N(X) - N_Y(X) \leq \sum_{\Sigma'} \#\{(K, L) \in \Sigma' | \text{Disc}_{res}(K)^m \text{Disc}_{res}(L)^n < \prod_{p \in S} |p|^{\exp(h_p, g_p)}\} \\
\leq X^{1/m} O_\epsilon \left(\sum_{(q_d) \prod d | q_d > Y} \prod_{d} |q_d|^{\delta + \epsilon} \right) \\
\leq X^{1/m} O_\epsilon \left(\sum_{|q| > Y} |q|^{\delta + \epsilon} \right).
\]
Therefore the summation in the last line is convergent since $\delta < -1$ and $N(X) - N_Y(X)$ is uniformly bounded as $O(X^{1/m})$. By taking $Y = Y_0$ for some $Y_0 > 0$, we get that

$$C_Y \leq \limsup_{X \to \infty} \frac{N(X)}{X^{1/m}} \leq C_{Y_0} + O(1),$$

which shows the uniform boundedness of C_Y for all $Y > 0$ and the convergence of C_Y as Y approaches to infinity. Moreover, the difference

$$\lim_{Y \to \infty} \limsup_{X \to \infty} \frac{N(X) - N_Y(X)}{X^{1/m}} \leq \lim_{Y \to \infty} \sum_{|q| > Y} O_e(|q|^b e^r) = 0,$$

therefore it proves that

$$\limsup_{X \to \infty} \frac{N(X)}{X^{1/m}} \leq \lim_{Y \to \infty} \left(\lim_{X \to \infty} \frac{N_Y(X)}{X^{1/m}} + \limsup_{X \to \infty} \frac{N(X) - N_Y(X)}{X^{1/m}} \right)$$

$$= \lim_{Y \to \infty} C_Y.$$ \hfill \Box

6 Acknowledgement

I am extremely grateful to my advisor Melanie Matchett Wood for constant encouragement and many helpful discussions. I would like to thank Manjul Bhargava, Jürgen Klüners, Arul Shankar, Takashi Taniguchi, Frank Thorne and Jacob Tsimerman for helpful conversations. I would like to thank, in particular, Manjul Bhargava for a suggestion to improve the uniformity estimate, and Frank Thorne for a suggestion to improve the product lemma. I would also like to thank Manjul Bhargava, Evan Dummit, Gunter Malle, Arul Shankar, Takashi Taniguchi, Takehiko Yasuda, and the anonymous referee for suggestions on an earlier draft. This work is partially supported by National Science Foundation grant DMS-1301690.

References

Jiuya Wang, Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA

E-mail address: jiuyawang@math.wisc.edu