Problem 1 (10 points):
Given the following surface:
\[x^2 + 2y^2 + z^2 = 4 \]

1. What is the tangent plane at (1, 1, 1)?
2. And what is the normal vector of this plane?

The surface is the level set of \(f(x, y, z) = x^2 + 2y^2 + z^2 - 4 \) at \(0 \).
So, \(\nabla f = \left(\frac{2x}{2x}, \frac{4y}{4y}, \frac{2z}{2z} \right) \)
\(\nabla f \bigg|_{(1,1,1)} = \left(\frac{2}{2}, \frac{4}{4}, \frac{2}{2} \right) = \left(\frac{2}{2}, \frac{2}{2}, \frac{2}{2} \right) \)
is the normal vector.

The tangent plane is
\[\left(\frac{2}{2} \right) \cdot \left(\frac{x-1}{2}, \frac{y-1}{2}, \frac{z-1}{2} \right) = 0 \]
i.e. \(x - 2y + z = 4 \).

Problem 2 (10 points):
Consider the level sets of the function
\[f(x, y) = x^2 + 4y^2 \]
at level 4,
1. Find the points on the level set where the gradient is parallel to the vector \(\vec{a} = \left(\frac{1}{1} \right) \)
2. At each point you find out in part 1, in which direction \(f \) increases fastest? in which direction \(f \) decreases the fastest? in which direction the function remains the same?

\[\nabla f = \left(\frac{2x}{8y} \right) \]
\(\nabla f = k \cdot (1, 1) \Rightarrow \frac{x}{2} = \frac{y}{k} \)
\(\left(\frac{k}{2} \right)^2 + 4 \cdot \left(\frac{k}{8} \right)^2 = 4 \Rightarrow k = \pm \frac{8}{\sqrt{5}} \)
sO there are 2 points: \(P_1 : \left(\frac{6}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) \) and \(P_2 : \left(-\frac{4}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right) \)
 corresPonding to \(k_1 = \frac{8}{\sqrt{5}} \) and \(k_2 = -\frac{8}{\sqrt{5}} \)

2. At \(P_1 \), \(k_1 = \frac{8}{\sqrt{5}} \)
\(\nabla f = \frac{8}{\sqrt{5}} \cdot (1, 1) \)
In \(\nabla f \) direction \(f \) increaseS fastest, in \(-\nabla f = -\frac{8}{\sqrt{5}} \cdot (1, 1) \) direction \(f \) decreaseS the fastest.
The direction perpendicular to ∇f is $\frac{\partial}{\partial x^5} \left(-1 \right)$ or $\frac{\partial}{\partial x^5} \left(-1 \right)$, f remains the same.

For P_2: $k_2 = -\frac{8}{5}$, in $\nabla f = -\frac{8}{5 \sqrt{5}} \left(-1 \right)$ direction, f increases fastest.

in $-\nabla f = \frac{8}{5 \sqrt{5}} \left(1 \right)$ direction f decreases fastest.

in direction perpendicular to ∇f, i.e. $\frac{8}{\sqrt{5}} \left(-1 \right)$ or $\frac{8}{\sqrt{5}} \left(-1 \right)$, f remains the same.