Number. | D = Fundamental discriminant | h(D)=class number | List of all reduced forms | Structure of the class group | representatives of ideal classes |
1. | -3 | 1 | [1,1,1] | trivial | |
2. | -4 | 1 | [1,0,1] | trivial | |
3. | -7 | 1 | [1,1,2] | trivial | |
4. | -8 | 1 | [1,0,2] | trivial | |
5. | -11 | 1 | [1,1,3] | trivial | |
6. | -15 | 2 | [1,1,4],[2,1,2] | Z/2 | |
7. | -19 | 1 | [1,1,5] | trivial | |
8. | -20 | 2 | [1,0,5],[2,2,3] | Z/2 | |
9. | -23 | 3 | [2,1,3],[2,-1,3],[1,1,6] | Z/3 | (1),((1+sqrt(-23))/2, 3), ((1+sqrt(-23))/2+2, 3) |
10. | -24 | 2 | [1,0,6],[2,0,3] | Z/2 | |
11. | -31 | 3 | 1,1,8],[2,1,4],[2,-1,4] | Z/3 | (1),(2,(1+Sqrt[-31])/2),(2,(-1+Sqrt[-31])/2) |
12. | -35 | 2 | [1,1,9],[3,1,3] | Z/2 | (1,),(2,(-35)^(1/2) + 1) |
13. | -39 | 4 | [1,1,10],[2,-1,5],[2,1,5],[3,3,4] | Z/4 | (1),(2,(1+Sqrt(-39))/2),(2,(1-Sqrt(-39))/2),(3,(3-Sqrt(-39))/2) |
14. | -40 | 2 | [1,0,10],[2,0,5] | Z/2 | (1),(2, sqrt(-10)) |
15. | -43 | 1 | [1,1,11] | trivial | |
16. | -47 | 5 | [1,1,12],[2,+-1,6],[3,+-1,4] | Z/5 | |
17. | -51 | 2 | [1,1,13], [3,3,5] | Z/2 | |
18. | -52 | 2 | [1,0,13],[2,2,7] | Z/2 | |
19. | -55 | 4 | [2,-1,7],[2,1,7],[4,3,4],[1,1,14] | Z/4 | |
20. | -56 | 4 | [1,0,14],[2,0,7],[3,+-2,5] | Z/4 | |
21. | -59 | 3 | [1,1,15],[3,+_1,5] | Z/3 | |
22. | -67 | 1 | [1,1,17] | trivial | |
23. | -68 | 4 | [1,0,17],[2,2,9],[3,-2,6],[3,2,6] | Z/4 | |
24. | -71 | 7 | [1,1,18],[2,1,9],[2,-1,9],[3,1,6],[3,-1,6],[4,3,5],[4,-3,5] | Z/7 | |
25. | -79 | 5 | [1,1,20], [2,+-1,10], [4,+-1,5] | Z/5 | |
26. | -83 | . | . | . | |
27. | -84 | 4 | [1,0,21],[2,2,11],[3,0,7],[5,4,5] | Z/2 x Z/2 | |
28. | -87 | 6 | [1,1,22], [2, +-1, 11], [3,3,8], [4,+-3, 6] | Z/6 | |
29. | -88 | 2 | [13,-4,-2],[1,0,22] | Z/2 | |
30. | -91 | 2 | [1,1,23],[5,3,5] | Z/2 | |
31. | -95 | 8 | [1,1,24],[2,+_1,12],[3,+_1,8],[4,+_1,6],[5,5,6] | Z/8 | |
32. | -103 | 5 | [1,1,26],[2,-1,13],[2,1,13],[4,-3,7],[4,3,7] | Z/5 | |
33. | -104 | 6 | [1,0,26],[2,0,13],[3,-2,9],[3,2,9],[5,-4,6],[5,4,6] | Z/6 | |
34. | -107 | 3 | [1,1,27],[3,1,9],[3,-1,9] | Z/3 | |
35. | -111 | 8 | [1,1,28], [2,+-1,14], [3,3,10], [4,+-1,7], [5,+-3,6] | Z/8 | |
36. | -115 | 2 | [1,1,29],[5,5,7] | Z/2 | |
37. | -116 | 6 | [1, 0, 24], [2, 2, 15], [3, +-2, 10], [5, +-2, 6] | Z/6 | |
38. | -119 | 10 | [1, 1, 30], [2, +-1, 15], [3, +-1, 10], [4, +-3, 8], [5,+-1, 6], [6, 5, 6] | Z/10 | |
39. | -120 | 4 | [1,0,30],[2,0,15],[3,0,10],[5,0,6] | Z/2 x Z/2 | |
40. | -123 | 2 | [1,1,31],[3,3,11] | Z/2 | |
41. | -127 | 5 | [1,1,32],[2,+_1,16],[4,+_1,8] | Z/5 | |
42. | -131 | 5 | [1,1,33],[3,-1,11],[3,1,11],[5,-3,7],[5,3,7] | Z/5 | |
43. | -132 | 4 | [1,0,33],[2,2,17],[3,0,11],[6,6,7] | Z/2 x Z/2 | |
44. | -136 | 4 | [1,0,34], [2,0,17],[5,2,7],[5,-2,7] | Z/4 | |
45. | -139 | 3 | [1,1,35], [5,+-1,7] | Z/3 | |
46. | -143 | 10 | [1,1,36],[6,5,7],[6,-5,7],[2,1,18],[2,-1,18],[3,1,12],[3,-1,12], [4,1, 9],[4,-1,9][6,1,6] | Z/10 | |
47. | -148 | 2 | [1, 0, 37], [2, 2, 19] | Z/2 | |
48. | -151 | 7 | [1, 1, 38], [2, +-1, 19], [4, +-3, 10], [5, +-3, 8] | Z/7 | |
49. | -152 | 6 | [3,2,13],[6,4,7],[2,0,19],[6,-4,7],[3,-2,13],[1,0,38] | Z/6 | |
50. | -155 | 4 | [1,1,39],[3,+-1,13],[5,5,9] | Z/4 | |
51. | -159 | 10 | [1,1,40],[2,+_1,20],[3,3,14],[4,+_1,10],[5,+_1,8],[6,+_3,7] | Z/10 | |
52. | -163 | 1 | [1,1,41] | trivial | |
53. | -164 | 8 | [1,0,41],[2,2,21],[3,-2,14],[3,2,14],[5,-4,9],[5,4,9],[6,-2,7],[6,2,7] | Z/8 | |
54. | -167 | 11 | [1,1,42],[2,1,21],[3,1,14],[6,1,7],[4,3,11],[6,5,8],[2,-1,21],[3,-1,14],[6,-1,7],[4,-3,11],[6,-5,8] | Z/11 | |
55. | -168 | 4 | [1,0,42], [2,0,21], [3,0,14], [6,0,7] | Z/2 x Z/2 | |
56. | -179 | . | . | . | |
57. | -183 | 8 | [1, 1, 46], [2, +-1, 23], [3, 3, 16], [4, +-3, 12], [6, +-3, 8] | Z/8 | |
58. | -184 | 4 | [1,0,46], [2, 0, 23], [5, +-4, 10] | Z/4 | |
59. | -187 | 2 | [7,3,7],[1,1,47] | Z/2 | |
60. | -191 | 13 | [1,1,48],[2,+_1,24],[3,+_1,16],[4,+_ 1,12],[6,+_1,8],[5,+_3,10],[6,+_5,9] | Z/13 | |
61. | -195 | 4 | [1,1,49],[3,3,17],[5,5,11],[7,1,7] | Z/2 x Z/2 | |
62. | -199 | 9 | [1,1,50],[2,-1,25],[2,1,25],[4,-3,13],[4,3,13],[5,-1,10],[5,1,10],[7,-5,8],[7,5,8] | Z/9 | |
63. | -203 | 4 | [1,1,51],[3,-1,17],[3,1,17],[7,7,9] | Z/4 | |
64. | -211 | 3 | [1,1,53],[5,3,11],[5-3,11] | Z/3 | |
65. | -212 | 6 | [1,0,53], [2,2,27], [3,+-2,18], [6,+-2,9] | Z/6 | |
66. | -215 | . | . | . | |
. | . | . | . | . | |
. | -235 | 2 | [1,1,59],[5,5,13] | Z/2 |
We list below the first few positive fundamental discriminants. (These are the numbers of the form
d with d square free and congruent to 1 mod 4 and 4d with d square free and congruent to 2 or 3 mod 4.)
Number. | D = Fundamental discriminant | h(D)=class number | h^+(D)=# of narrow ideal classes | Cycle structure of reduced forms (; separates cycles) | Unit of norm -1 | Unit of norm 1 | decomposition of primes: 1=split,0=ramified,-1=inert | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 |
1. | 5 | 1 | 1 | [1,1,-1],[-1,1,1] | (1+sq(5))/2 | (3+sq(5))/2 | . | -1 | -1 | 0 | -1 | 1 | -1 | -1 | 1 | -1 | 1 |
2. | 8 | 1 | 1 | [1,2,-1],[-1,2,1] | 1+sq(2) | 3+2sq(2) | . | 0 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 |
3. | 12 | 1 | 2 | [1,2,-2],[-2,2,1];[-1,2,2],[2,2,-1] | None | 2+sq(3) | . | 0 | 0 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 |
4. | 13 | 1 | 1 | [1,3,-1],[-1,3,1] | (3+sq(13))/2 | (11+3sq(13))/2 | . | . | . | . | . | . | . | . | . | . | . |
5. | 17 | 1 | 1 | [2,1,-2],[-2,3,1],[1,3,-2],[-2,1,2],[2,3,-1],[-1,3,2] | 4+sq(17) | 33+8sq(17) | . | 1 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 |
6. | 21 | 1 | 2 | . | None | (5+sqr(21))/2 | . | -1 | 0 | 1 | 0 | -1 | -1 | 1 | -1 | -1 | -1 |
7. | 24 | 1 | 2 | [1, 4, -2], [-2, 4, 1];[-1, 4, 2], [2, 4, -1] | None | 5 + 2*sqrt(6) | . | 0 | 0 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 |
8. | 28 | 1 | 2 | . | None | 8+sqr(7)3 | . | 0 | -1 | 1 | 0 | -1 | -1 | -1 | 1 | -1 | 1 |
9. | 29 | 1 | . | . | . | . | . | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 0 |
10. | 33 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
11. | 37 | 1 | 1 | [3,1,-3],[-3,5,1],[1,5,-3],[-3,1,3],[3,5,-1],[-1,5,3] | 6+Sqrt[37] | 73+12*Sqrt[37] | . | . | . | . | . | . | . | . | . | . | . |
12. | 40 | 2 | 2 | [3,2,-3],[-3,4,2],[2,4,-3],[-3,2,3],[3,4,-2],[-2,4,3];[1,6,-1],[-1,6,1] | -3-sqrt(10) | 19+3sqrt(40) | . | . | . | . | . | . | . | . | . | . | . |
13. | 41 | 1 | 1 | [-4, 3, 2],[-4, 5, 1],[-2, 3, 4],[-2, 5, 2],[-1, 5, 4],[1, 5, -4],[2, 3, -4],[2, 5, -2],[4, 3, -2],[4, 5, -1] | 32+5sq(41) | 2049+320sq(41) | . | . | . | . | . | . | . | . | . | . | . |
14. | 44 | 1 | 2 | [1,6,-2],[-2,6,1]; [-1,6,2],[2,6,-1] | None | 10 + 3sq(11) | . | . | . | . | . | . | . | . | . | . | . |
15. | 53 | 1 | 1 | [1,7,-1],[-1,7,1] | (7+sq(53))/2 | 51+7sq(53))/2 | . | . | . | . | . | . | . | . | . | . | . |
16. | 56 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
17. | 57 | 1 | 2 | [3, 3, -4], [-4, 5, 2], [2, 7, -1], [-1, 7, 2], [2, 5, 4], [-4, 3, 3];[-3, 3, 4], [4, 5, -2], [-2, 7, 1], [1, 7, -2], [-2, 5, 4], [4, 3, -3] | None | (302+40*sqrt(57))/2 | . | . | . | . | . | . | . | . | . | . | . |
18. | 60 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
19. | 61 | 1 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
20. | 65 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
21. | 69 | 1 | 2 | [3,3,-5],[-5,7,1],[1,7,-5],[-5,3,3];[-3,3,5],[5,7,-1],[-1,7,5],[5,3,-3] | None | (25+3*Sqrt[69])/2 | . | . | . | . | . | . | . | . | . | . | . |
22. | 73 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
23. | 76 | 1 | 2 | [-5, 4, 3],[-5, 6, 2],[-1, 8, 3],[2, 6, -5],[3, 4, -5],[3, 8,-1];[-3, 4, 5],[-3, 8, 1],[-2, 6, 5],[1, 8, -3],[5, 4, -3],[5, 6, -2] | None | 170 + 39sq(19) | . | . | . | . | . | . | . | . | . | . | . |
24. | 77 | 1 | 2 | [1,7,-7],[-7,7,1];[-1,7,7],[7,7,-1] | None | (9 + sq(77))/2 | . | . | . | . | . | . | . | . | . | . | . |
25. | 85 | 2 | 2 | [1,9,-1],[-1,9,1]; [3,7,-3],[-3,5,5],[5,5,-3],[-3,7,3],[3,5,-5],[-5,5,3] | (9+sq(85))/2 | (83+9sq(85))/2 | . | . | . | . | . | . | . | . | . | . | . |
Number | D = Discriminant | Min. poly. f(x) of a primitive element | Integers | class number | Galois group | Associated quadratic field | decomposition of primes | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 |
. | -23 | x^3 - x + 1 | Z[x]/(f) | 1 | S_3 | Q(sqrt(D)) | . | Q | Q | Pq | Pq | Pq | Q | Pq | Pq | P'P^2 | Q |
. | -31 | x^3+x+1 | Z[x]/(f) | 1 | S_3 | Q(sqrt(D)) | . | . | . | . | . | . | . | . | . | . | . |
. | -31 | x^3-2x^2+x+1 | Z[x]/(f) | 1 | S_3 | Q(sqrt(D)) | . | Q | Pq | Q | Q | Pq | Pq | Pq | Q | Pq | Pq |
. | -44 | x^3 + 2x^2 - 2 | Z[x]/(f) | 1 | S_3 | Q(sqrt(D)) | . | P^3 | Pq | Q | Q | P'P^2 | Pq | Pq | Pq | Q | Pq |
. | -59 | x^3 + 2x + 1 | Z[x]/(f) | 1 | S_3 | Q(sqrt(D)) | . | Pq | Q | Q | Q | Pq | Pq | PP'P" | Q | Pq | Q |
. | -76 | x^3 + 3x^2+x+1 | Z[x]/(f) | 1 | S_3 | Q(sqrt(D)) | . | P^3 | Pq | Q | Q | Q | Pq | Q | P'P^2 | PP'P" | Pq |
. | -83 | x^3-x^2+x-2 | Z[x]/(f) | 1 | S_3 | Q(sqrt(D)) | . | Pq | Q | Pq | Q | Q | Pq | Q | Pq | PP'P" | Q |
. | -104 | x^3-x+2 | Z[x]/(f) | 1 | S_3 | Q(sqrt(D) | . | . | . | . | . | . | . | . | . | . | . |