Math 358 Fundamental discriminants of positive definite quadratic forms

Number.D = Fundamental discriminant h(D)=class number List of all reduced forms Structure of the class group representatives of ideal classes
1. -3 1 [1,1,1] trivial
2. -4 1 [1,0,1] trivial
3. -7 1 [1,1,2] trivial
4. -8 1 [1,0,2] trivial
5. -11 1 [1,1,3] trivial
6. -15 2 [1,1,4],[2,1,2] Z/2
7. -19 1 [1,1,5] trivial
8. -20 2 [1,0,5],[2,2,3] Z/2
9. -23 3 [2,1,3],[2,-1,3],[1,1,6] Z/3 (1),((1+sqrt(-23))/2, 3), ((1+sqrt(-23))/2+2, 3)
10. -24 2 [1,0,6],[2,0,3] Z/2
11. -31 3 1,1,8],[2,1,4],[2,-1,4]  Z/3 (1),(2,(1+Sqrt[-31])/2),(2,(-1+Sqrt[-31])/2)
12. -35 2 [1,1,9],[3,1,3] Z/2 (1,),(2,(-35)^(1/2) + 1)
13. -39 4 [1,1,10],[2,-1,5],[2,1,5],[3,3,4] Z/4 (1),(2,(1+Sqrt(-39))/2),(2,(1-Sqrt(-39))/2),(3,(3-Sqrt(-39))/2)
14. -40 2 [1,0,10],[2,0,5] Z/2 (1),(2, sqrt(-10))
15. -43 1 [1,1,11] trivial
16. -47 5 [1,1,12],[2,+-1,6],[3,+-1,4] Z/5
17. -51 2 [1,1,13], [3,3,5] Z/2
18. -52 2 [1,0,13],[2,2,7] Z/2
19. -55 4 [2,-1,7],[2,1,7],[4,3,4],[1,1,14] Z/4
20. -56 4 [1,0,14],[2,0,7],[3,+-2,5] Z/4
21. -59 3 [1,1,15],[3,+_1,5] Z/3
22. -67 1 [1,1,17] trivial
23. -68 4 [1,0,17],[2,2,9],[3,-2,6],[3,2,6] Z/4
24. -71 7 [1,1,18],[2,1,9],[2,-1,9],[3,1,6],[3,-1,6],[4,3,5],[4,-3,5] Z/7
25. -79 5 [1,1,20], [2,+-1,10], [4,+-1,5] Z/5
26. -83 . . .
27. -84 4 [1,0,21],[2,2,11],[3,0,7],[5,4,5] Z/2 x Z/2
28. -87 6 [1,1,22], [2, +-1, 11], [3,3,8], [4,+-3, 6] Z/6
29. -88 2 [13,-4,-2],[1,0,22] Z/2
30. -91 2 [1,1,23],[5,3,5] Z/2
31. -95 8 [1,1,24],[2,+_1,12],[3,+_1,8],[4,+_1,6],[5,5,6] Z/8
32. -103 5 [1,1,26],[2,-1,13],[2,1,13],[4,-3,7],[4,3,7] Z/5
33. -104 6 [1,0,26],[2,0,13],[3,-2,9],[3,2,9],[5,-4,6],[5,4,6] Z/6
34. -107 3 [1,1,27],[3,1,9],[3,-1,9] Z/3
35. -111 8 [1,1,28], [2,+-1,14], [3,3,10], [4,+-1,7], [5,+-3,6] Z/8
36. -115 2 [1,1,29],[5,5,7] Z/2
37. -116 6 [1, 0, 24], [2, 2, 15], [3, +-2, 10], [5, +-2, 6] Z/6
38. -119 10 [1, 1, 30], [2, +-1, 15], [3, +-1, 10], [4, +-3, 8], [5,+-1, 6], [6, 5, 6] Z/10
39. -120 4 [1,0,30],[2,0,15],[3,0,10],[5,0,6]  Z/2 x Z/2
40. -123 2 [1,1,31],[3,3,11] Z/2
41. -127 5 [1,1,32],[2,+_1,16],[4,+_1,8] Z/5
42. -131 5 [1,1,33],[3,-1,11],[3,1,11],[5,-3,7],[5,3,7] Z/5
43. -132 4 [1,0,33],[2,2,17],[3,0,11],[6,6,7] Z/2 x Z/2
44. -136 4 [1,0,34], [2,0,17],[5,2,7],[5,-2,7] Z/4
45. -139 3 [1,1,35], [5,+-1,7] Z/3
46. -143 10 [1,1,36],[6,5,7],[6,-5,7],[2,1,18],[2,-1,18],[3,1,12],[3,-1,12], [4,1, 9],[4,-1,9][6,1,6] Z/10
47. -148 2 [1, 0, 37], [2, 2, 19] Z/2
48. -151 7 [1, 1, 38], [2, +-1, 19], [4, +-3, 10], [5, +-3, 8] Z/7
49. -152 6 [3,2,13],[6,4,7],[2,0,19],[6,-4,7],[3,-2,13],[1,0,38] Z/6
50. -155 4 [1,1,39],[3,+-1,13],[5,5,9] Z/4
51. -159 10 [1,1,40],[2,+_1,20],[3,3,14],[4,+_1,10],[5,+_1,8],[6,+_3,7] Z/10
52. -163 1 [1,1,41] trivial
53. -164 8 [1,0,41],[2,2,21],[3,-2,14],[3,2,14],[5,-4,9],[5,4,9],[6,-2,7],[6,2,7] Z/8
54. -167 11 [1,1,42],[2,1,21],[3,1,14],[6,1,7],[4,3,11],[6,5,8],[2,-1,21],[3,-1,14],[6,-1,7],[4,-3,11],[6,-5,8] Z/11
55. -168 4 [1,0,42], [2,0,21], [3,0,14], [6,0,7] Z/2 x Z/2
56. -179 . . .
57. -183 8 [1, 1, 46], [2, +-1, 23], [3, 3, 16], [4, +-3, 12], [6, +-3, 8] Z/8
58. -184 4 [1,0,46], [2, 0, 23], [5, +-4, 10] Z/4
59. -187 2 [7,3,7],[1,1,47] Z/2
60. -191 13 [1,1,48],[2,+_1,24],[3,+_1,16],[4,+_ 1,12],[6,+_1,8],[5,+_3,10],[6,+_5,9] Z/13
61. -195 4 [1,1,49],[3,3,17],[5,5,11],[7,1,7] Z/2 x Z/2
62. -199 9 [1,1,50],[2,-1,25],[2,1,25],[4,-3,13],[4,3,13],[5,-1,10],[5,1,10],[7,-5,8],[7,5,8] Z/9
63. -203 4 [1,1,51],[3,-1,17],[3,1,17],[7,7,9] Z/4
64. -211 3 [1,1,53],[5,3,11],[5-3,11] Z/3
65. -212 6 [1,0,53], [2,2,27], [3,+-2,18], [6,+-2,9] Z/6
66. -215 . . .
. . . . .
. -235 2 [1,1,59],[5,5,13] Z/2

Discriminants of real quadratic fields

We list below the first few positive fundamental discriminants. (These are the numbers of the form
d with d square free and congruent to 1 mod 4 and 4d with d square free and congruent to 2 or 3 mod 4.)

Number.D = Fundamental discriminant h(D)=class number h^+(D)=# of narrow ideal classes Cycle structure of reduced forms (; separates cycles) Unit of norm -1 Unit of norm 1 decomposition of primes: 1=split,0=ramified,-1=inert 2357111317192329
1. 5 1 1 [1,1,-1],[-1,1,1] (1+sq(5))/2 (3+sq(5))/2 . -1 -1 0 -1 1 -1 -1 1 -1 1
2. 8 1 1 [1,2,-1],[-1,2,1] 1+sq(2) 3+2sq(2) . 0 -1 -1 1 -1 -1 1 -1 1 -1
3. 12 1 2 [1,2,-2],[-2,2,1];[-1,2,2],[2,2,-1] None 2+sq(3) . 0 0 -1 -1 1 1 -1 -1 1 -1
4. 13 1 1 [1,3,-1],[-1,3,1] (3+sq(13))/2 (11+3sq(13))/2 . . . . . . . . . . .
5. 17 1 1 [2,1,-2],[-2,3,1],[1,3,-2],[-2,1,2],[2,3,-1],[-1,3,2] 4+sq(17) 33+8sq(17) . 1 0 0 -1 -1 -1 -1 1 1 -1
6. 21 1 2 . None (5+sqr(21))/2 . -1 0 1 0 -1 -1 1 -1 -1 -1
7. 24 1 2 [1, 4, -2], [-2, 4, 1];[-1, 4, 2], [2, 4, -1] None 5 + 2*sqrt(6) . 0 0 1 -1 -1 -1 -1 1 1 1
8. 28 1 2 . None 8+sqr(7)3 . 0 -1 1 0 -1 -1 -1 1 -1 1
9. 29 1 . . . . . -1 -1 1 1 -1 1 -1 -1 1 0
10. 33 . . . . . . . . . . . . . . . .
11. 37 1 1 [3,1,-3],[-3,5,1],[1,5,-3],[-3,1,3],[3,5,-1],[-1,5,3] 6+Sqrt[37] 73+12*Sqrt[37] . . . . . . . . . . .
12. 40 2 2 [3,2,-3],[-3,4,2],[2,4,-3],[-3,2,3],[3,4,-2],[-2,4,3];[1,6,-1],[-1,6,1] -3-sqrt(10) 19+3sqrt(40) . . . . . . . . . . .
13. 41 1 1 [-4, 3, 2],[-4, 5, 1],[-2, 3, 4],[-2, 5, 2],[-1, 5, 4],[1, 5, -4],[2, 3, -4],[2, 5, -2],[4, 3, -2],[4, 5, -1] 32+5sq(41) 2049+320sq(41) . . . . . . . . . . .
14. 44 1 2 [1,6,-2],[-2,6,1]; [-1,6,2],[2,6,-1] None 10 + 3sq(11) . . . . . . . . . . .
15. 53 1 1 [1,7,-1],[-1,7,1] (7+sq(53))/2 51+7sq(53))/2 . . . . . . . . . . .
16. 56 . . . . . . . . . . . . . . . .
17. 57 1 2 [3, 3, -4], [-4, 5, 2], [2, 7, -1], [-1, 7, 2], [2, 5, 4], [-4, 3, 3];[-3, 3, 4], [4, 5, -2], [-2, 7, 1], [1, 7, -2], [-2, 5, 4], [4, 3, -3] None (302+40*sqrt(57))/2 . . . . . . . . . . .
18. 60 . . . . . . . . . . . . . . . .
19. 61 1 . . . . . . . . . . . . . . .
20. 65 . . . . . . . . . . . . . . . .
21. 69 1 2 [3,3,-5],[-5,7,1],[1,7,-5],[-5,3,3];[-3,3,5],[5,7,-1],[-1,7,5],[5,3,-3] None (25+3*Sqrt[69])/2 . . . . . . . . . . .
22. 73 . . . . . . . . . . . . . . . .
23. 76 1 2 [-5, 4, 3],[-5, 6, 2],[-1, 8, 3],[2, 6, -5],[3, 4, -5],[3, 8,-1];[-3, 4, 5],[-3, 8, 1],[-2, 6, 5],[1, 8, -3],[5, 4, -3],[5, 6, -2] None 170 + 39sq(19) . . . . . . . . . . .
24. 77 1 2 [1,7,-7],[-7,7,1];[-1,7,7],[7,7,-1] None (9 + sq(77))/2 . . . . . . . . . . .
25. 85 2 2 [1,9,-1],[-1,9,1]; [3,7,-3],[-3,5,5],[5,5,-3],[-3,7,3],[3,5,-5],[-5,5,3] (9+sq(85))/2 (83+9sq(85))/2 . . . . . . . . . . .

Non-totally-real cubic fields, L, of small discriminant

Notation for decomposition of primes: A prime of L over a rational prime p will be
denoted P(or P' or P"),q,Q according to degree of the residue class field extension being 1,2,3.

NumberD = DiscriminantMin. poly. f(x) of a primitive elementIntegers class number Galois group Associated quadratic field decomposition of primes 2357111317192329
. -23 x^3 - x + 1 Z[x]/(f) 1 S_3 Q(sqrt(D)) . Q Q PqPqPq Q Pq Pq P'P^2 Q
. -31 x^3+x+1 Z[x]/(f) 1 S_3 Q(sqrt(D)) . . . . . . . . . . .
. -31 x^3-2x^2+x+1 Z[x]/(f) 1 S_3 Q(sqrt(D)) . Q Pq Q Q Pq Pq Pq Q Pq Pq
. -44 x^3 + 2x^2 - 2 Z[x]/(f) 1 S_3 Q(sqrt(D)) . P^3Pq Q Q P'P^2 Pq Pq Pq Q Pq
. -59 x^3 + 2x + 1 Z[x]/(f) 1 S_3 Q(sqrt(D)) . Pq Q Q Q Pq Pq PP'P" Q Pq Q
. -76 x^3 + 3x^2+x+1 Z[x]/(f) 1 S_3 Q(sqrt(D)) . P^3 Pq Q Q Q Pq QP'P^2 PP'P" Pq
. -83 x^3-x^2+x-2 Z[x]/(f) 1 S_3 Q(sqrt(D)) . Pq Q Pq Q Q Pq Q Pq PP'P" Q
. -104 x^3-x+2 Z[x]/(f) 1 S_3 Q(sqrt(D) . . . . . . . . . . .

The two fields with discriminant -31 are isomorphic.