COHOMOLOGY OF LOCALLY SYMMETRIC SPACES AND THE MODULI SPACE OF CURVES

LESLIE SAPER

Let Γ be a group and E a Γ-module. We are interested in the cohomology $H^\cdot(\Gamma; E)$. If X is a contractible space on which Γ acts properly one may represent this cohomology topologically as $H^\cdot(\Gamma \backslash X; \mathcal{E})$ for a certain sheaf \mathcal{E}. Our primary interest is when Γ is arithmetic and X is a symmetric space or when Γ is a mapping class group and X is Teichmüller space. When $M = \Gamma \backslash X$ is a compact Riemannian manifold it is profitable to represent cohomology by harmonic forms from which one can prove Poincaré duality. When M is non-compact the same can essentially be done but for the L^2-cohomology $H^\cdot_{(2)}(M; \mathcal{E})$, which is an invariant of the quasi-isometry class of the metric.

We consider three examples to indicate that $H^\cdot_{(2)}(M; \mathcal{E})$ can represent a topological invariant: (1) Cheeger’s horn metrics on triangulated pseudomanifolds; (2) Saper’s proof that the L^2-cohomology of the Weil-Petersson metric on the moduli space of curves \mathcal{M}_g is the cohomology of the Deligne-Mumford compactification $\overline{\mathcal{M}_g}$; and (3) Zucker’s conjecture (proved by Saper-Stern and Looijenga) that the L^2-cohomology of a Hermitian locally symmetric space $\Gamma \backslash X$ is the middle perversity intersection cohomology of the Baily-Borel Satake compactification $\Gamma \backslash X^\ast$. We conclude this section with a heuristic for Zucker’s conjecture.

Example (2) above answered a question of Hain and Looijenga, perhaps motivated in analogy with Zucker’s conjecture. A better analogy suggests one consider the Siegel metric on \mathcal{M}_g, the pull-back of the locally symmetric metric under the Torelli embedding $\tau: \mathcal{M}_g \to \mathcal{A}_g$, and the Satake compactification \mathcal{M}^\ast_g, the closure of $\tau(\mathcal{M}_g)$ in the Baily-Borel Satake compactification \mathcal{A}^\ast_g. We conjectured in 1993 that the analogue of Zucker’s conjecture holds in this setting. Although no progress has been made on this conjecture for $g > 3$, more recent work on Rapoport’s conjecture suggests a possible approach.

Rapoport’s conjecture (made independently by Goresky and MacPherson) asserts that for a Hermitian symmetric space X, either middle perversity intersection cohomology of the reductive Borel-Serre compactification $\Gamma \backslash X^{\text{RBS}}$ is isomorphic to the middle perversity intersection cohomology of $\Gamma \backslash X^\ast$. The conjecture was motivated by Langlands’s program—the point is that $\Gamma \backslash X^{\text{RBS}}$ is a far less singular compactification making local calculations easier. Saper proved the conjecture (actually a generalization to equal-rank spaces) in 2001 using L-modules, a combinatorial model of sheaves on $\Gamma \backslash X^{\text{RBS}}$.

In current work L-modules are being used to study $H^\cdot(\Gamma; E)$ itself for Γ arithmetic. We now suggest that an analogue of L-modules can be applied to address the 1993 conjecture on the moduli space of curves. Namely $\overline{\mathcal{M}_g}$ could play the role of the reductive Borel-Serre compactification. What is needed is to understand the

Abstract of talk given at Oberwolfach, Germany on 9 June 2011.
Siegel metric locally on $\overline{\mathcal{M}}_g$ (as opposed to locally on \mathcal{M}_g^*), understand the fibers of the extended Torelli map $\overline{\mathcal{M}}_g \to \mathcal{M}_g^*$, and prove a vanishing theorem on these fibers. Progress in some simple concrete examples has been made.

Department of Mathematics, Duke University, Box 90320, Durham, NC 27708, U.S.A.
E-mail address: saper@math.duke.edu
URL: http://www.math.duke.edu/faculty/saper