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ABSTRACT

Results of Nowak and collaborators concerning the onset of cancer due to the inactivation

of tumor suppresor genes give the distribution of the time until some individual in a popula-

tion has experienced two prespecified mutations, and the time until this mutant phenotype

becomes fixed in the population. In this article we apply these results to obtain insights

into regulatory sequence evolution in Drosophila and humans. In particular, we examine the

waiting time for a pair of mutations, the first of which inactivates an existing transcription

factor binding site and the second which creates a new one. Consistent with recent exper-

imental observations for Drosophila, we find that a few million years is sufficient, but for

humans with a much smaller effective population size, this type of change would take more

than 100 million years. In addition, we use these results to expose flaws in some of Michael

Behe’s arguments concerning mathematical limits to Darwinian evolution.
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INTRODUCTION

There is a growing body of experimental evidence that in Drosophila, significant changes

in gene regulation can occur in a short amount of time, compared to divergence time be-

tween species. LUDWIG et al. (1998, 2000, 2005) studied the evolution of the even-skipped

stripe 2 enhancer in four Drosophila species (D. melanogaster, D. yakuba, D. erecta, and

D. pseuodoobscura). While expression is strongly conserved, they found many substitutions

in the binding sites for bicoid, hunchback, Kruppel, and giant, as well as large differences

in the overall size of the enhancer region. In addition, they uncovered several binding sites

that have been gained and lost among these four species: a lineage-specific addition of the

bicoid-3 binding site in D. melanogaster that is absent in the other species, a lineage-specific

loss of the hunchback-1 site in D. yakuba, and the presence of an extra Kruppel site in D.

pseudoobscura relative to D. melanogaster. These differences are nicely summarized in Figure

2B of LUDWIG et al. (2005).

In a simulation study, STONE and WRAY (2001) estimated the rate of de novo gen-

eration of regulatory sequences from a random genetic background. They found that for

a given 6 nucleotide sequence, the time until it arose in a 2 kb region in some individual

was about 5,950 years for humans and 24 years for Drosophila. However, as MACARTHUR

and BROOKFIELD (2004) have already pointed out, there is a serious problem with Stone

and Wray’s computation. They assumed individuals in the population evolve independently,

while in reality there are significant correlations due to their common ancestors.

Motivated by this simulation study, DURRETT and SCHMIDT (2007) have recently

given a mathematical analysis for regulatory sequence evolution in humans, correcting the

calculation mentioned above. They assumed an effective population size of 10,000 and a per

nucleotide mutation rate of µ = 10−8. In this situation, the expected number of segregating
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sites in a 1 kb sequence is 1000(4Neµ) = 0.4 so it makes sense to talk about a population

consensus sequence. The authors defined this as the nucleotide at the site if there is no

variability in the population and if the site is variable, the most frequent nucleotide at that

site in the population. Using a generation time of 25 years, they found that in a 1 kb region,

the average waiting time for words of length 6 was 100,000 years. For words of length 8,

they found that the average waiting time was 375,000 years when there was a 7 out of 8

letter match to the target word in the population consensus sequence (an event of probability

roughly 5/16) and 650 million years when there was not.

Fortunately, in biological reality, the match of a regulatory protein to the target sequence

does not have to be exact for binding to occur. Biological reality is complicated, with the

acceptable sequences for binding described by position weight matrices that indicate the

flexibility at different points in the sequence. To simplify, we will assume that binding will

occur to any 8 letter word that has seven letters in common with the target word. If we do

this, then the mean waiting time reduces to about 60,000 years.

To explain the intuition behind the last result, consider the case of 8 letter words. If all

nucleotides are equally likely and independent, then using the binomial distribution we see

that a 6 out of 8 match to a given 8 letter target word has probability 63/16384 ≈ 0.00385,

so in a region of 1000 nucleotides, we expect to find 3.85 such approximate matches in the

population consensus sequence. Simple calculations then show that the waiting time to

improve one of these 6 out of 8 matches to 7 out of 8 has a mean of 60,000 years. This shows

that new regulatory sequences can come from small modifications of existing sequence.

Extending our previous work on the de novo generation of binding sites, this article will

consider the possibility that in a short amount of time, two changes will occur, the first of

which inactivates an existing binding site, and the second which creates a new one. This
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problem was studied earlier by CARTER and WAGNER (2002). In the next section, we

present the model and then a simpler theoretical analysis based on work of KOMAROVA

et al. (2003) and IWASA et al. (2004, 2005), who studied the onset of cancer due to the

inactivation of tumor suppressor genes. Lastly, we compare the theory with simulations and

experimental results.

THE MODEL

Consider a population of 2N haploid individuals. The reader should think of this as the

chromosomes of N diploid individuals evolving under the assumptions of random union of

gametes and additive fitness. However, since we will use the continuous time Moran model,

it is simpler and clearer to state our results for haploid individuals.

We start with a homogeneous population of wild type individuals. We have two sets of

possible mutant genotypes A and B. Wild type individuals mutate to type A at rate u1

and type A individuals mutate to type B at rate u2. We assume there is no back mutation.

We think of the A mutation as damaging an existing transcription factor binding site and

the B mutation as creating a second new binding site at a different location within the

regulatory region. We assign relative fitnesses 1, r, and s to wild type, A mutant, and B

mutant individuals respectively. See Figure 1 for a diagram of our model. We have used the

word damage above to indicate that the mutation may only reduce the binding efficiency,

not destroy the binding site. However, even if it does, the mutation need not be lethal. In

most cases the B mutation will occur when the number of A mutants is a small fraction of

the population, so most individuals with the A mutation will also carry a working copy of

the binding site.

We could also assume that the mutations occur in the other order: B first then A. This

is also a two stage process which falls into the general framwork of our analysis below under
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the appropriate fitness assumptions. The problems in population genetics to be solved are:

how long do we have to wait for (i) a type B mutation to arise in some individual? or (ii)

for the B mutant to become fixed in the population? These problems were investigated

by KOMAROVA et al. (2003) and IWASA et al. (2004, 2005) for tumor suppressor genes,

whose inactivation can lead to cancer, with A being the inactivation of one copy of the gene

and B the inactivation of the other. A nice account of these results can be found in Section

12.4 of NOWAK’s (2006) book on evolutionary dynamics. Here, we will apply these results

to estimate the waiting time for a switch between two transcription factor binding sites, as

defined in the statement of our problem above.

First we need to describe the population genetics model we are considering. Rather than

use the discrete time Wright-Fisher model, we use the continuous time Moran model. We

prefer the Moran process because it is a birth and death chain which means that the number

of type A individuals increases or decreases by one on each event. Biologically the Moran

model corresponds to a population with overlapping generations, and in the case of tumor

suppresor genes is appropriate for a collection of cells in an organ which is being maintained

at a constant size.

As the reader will see from the definition, the Moran process as a genetic model treats

N diploids as 2N haploids and replaces one chromosome at a time. In this context it is

common to invoke random union of gametes and assume fitnesses are additive, but that

is not necessary. Since heterozygotes are rare, the fitness of an A mutant is its fitness in

the heterozygous state. Supposing that the relative fitnesses have been normalized to have

maximum value 1, the dynamics may be described as follows:

• Each individual is subject to possible replacement at rate 1.

• A copy is made of an individual chosen at random from the population.
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• Mutation changes the copy from wild type to A with probability u1 and from A to B

with probability u2.

• If the relative fitness of the proposed new individual is 1-q after mutation (where q is

the selection coefficient), then the replacement occurs with probability 1-q. Otherwise,

nothing happens.

For more on this model, see Section 3.4 of EWENS (2004).

THEORETICAL RESULTS

Neutral case: Returning to the problem, we first consider the case in which the fitness

of the A mutant r = 1 and the population is of intermediate size as compared to the mutation

rates. That is, one in which the population size and mutation rates satisfy

1/
√

u2 << 2N << 1/u1 (1)

where for any numbers a and b, a << b is read “a is much less than b” and means a/b is

small.

Theorem 1. If 2N << 1/u1 and 2N >> 1/
√

u2, the probability P (t) that a B mutation has

occurred in some member of the population by time t

P (t) ≈ 1− exp(−2Nu1

√
u2t) (2)

where ≈ is read “approximately.” If B mutants become fixed with probability β then the result

for the fixation time is obtained by replacing u2 by βu2 in (2).

In words, the waiting time τB for the first B mutation is roughly exponential with mean

1/(2Nu1
√

u2) while the waiting time TB for B to become fixed is roughly exponential with
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mean 1/(2Nu1

√
u2β). Hence, if β < 1, this increases the waiting time by a factor of 1/

√
β

rather than the 1/β that one might naively expect. The last conclusion in the theorem

should be intuitive since successful mutations (i.e., those that go to fixation) occur at rate

βu2. In each of the next three theorems, the results for the fixation time can be obtained by

replacing u2 by βu2 in the waiting time result.

Sketch of proof. The mathematical proof of this result involves some technical complications,

but the underlying ideas are simple. Here and in what follows, readers not interested in the

underlying theory can skip the proof sketches. A simple calculation, see section 2 of IWASA

et al. (2005), shows that the probability a type A mutant will give rise to a type B mutant

before its family dies out is asymptotically
√

u2. Since type A mutations arise at rate 2Nu1,

the time σB until an A mutant arises that will have a descendant of type B is exponential

with mean 1/(2Nu1
√

u2). The amount of time after σB it takes for the B mutant to appear,

τB − σB, is of order 1/
√

u2. Since 2Nu1 << 1, the difference τB − σB is much smaller than

σB and the result holds for τB as well.

To give some intuition about how the B mutation arises, we note that in the neutral case,

r = 1, the number of copies of the A allele increases and decreases with equal probability,

so if we ignore the transitions that don’t change the number of mutant alleles, the result is

an unbiased random walk. Since such a walk represents the winnings of a gambler playing

a fair game, the probability that the number will rise to k = 1/
√

u2 before hitting 0 is 1/k.

When this occurs the central limit theorem of probability theory implies that the number of

steps required to return to 0 is of order k2 = 1/u2, since this requires the random walk to

move by k, and by the central limit theorem this will take time of order k2. Since B mutants

have probability u2, there is a reasonable chance of having a B mutation before the number

of A mutants returns to 0.
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IWASA et al. (2004) call this stochastic tunneling, since the second mutant (type B) arises

before the first one (type A) fixes. CARTER and WAGNER (2002) had earlier noticed this

possibility but they did not end up with a very nice formula for the average fixation time,

see their (2.2) and the formulas for the constants given in their appendix. The assumption

1/
√

u2 << 2N implies that throughout the scenario we have just described, the number of

type A mutants is a small fraction of the population, so we can ignore the probability that

the A mutants become fixed in the population. This means that in an intermediate sized

population (1) with r = 1, B mutations arise primarily through stochastic tunneling.

In contrast to populations of intermediate size, populations that are small (compared to

the mutation rates) have fixation of the type A mutation before the type B mutation arises.

Theorem 2. If 2N << 1/u1 and 2N << 1/
√

u2 then the probability P (t) that a B mutation

has occurred in some member of the population by time t

P (t) ≈ 1− exp(−u1t) (3)

Sketch of proof. To explain this, we note that the waiting times between A mutations are

exponential with mean 1/(2Nu1) and each one leads to fixation with probability 1/(2N),

so the time we have to wait for the first A mutation that will go to fixation is exponential

with mean 1/u1. The condition 2N << 1/
√

u2 implies that it is unlikely for the B mutation

to appear before A reaches fixation. The average time required for an A mutation to reach

fixation conditional on fixation, which is 2N by a result of KIMURA and OHTA (1969), and

the average time required for the B mutation to appear after fixation of the A mutation,

which is 1/(2Nu2), are each short compared to 1/u1 and can be ignored.

When 2N and 1/
√

u2 are about the same size, fixation of an A mutation and stochastic

tunneling are both possible situations in which a type B mutation can arise, and the analysis
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becomes very complicated. IWASA et al. (2005) obtained some partial results, see their

equation (15). Recent work of Durrett, Schmidt, and Schweinsberg (2007) addresses this

borderline case and gives the following result.

Theorem 3. If 2N << 1/u1 and 2N
√

u2 →
√

γ, then the probability P (t) that a B mutation

has occurred in some member of the population by time t, P (t) ≈ 1− exp(−α(γ)u1t) where

α(γ) =
∞∑

k=1

γk

(k − 1)!(k − 1)!

/
∞∑

k=1

γk

k!(k − 1)!
> 1 (4)

Hence, the mean waiting time in this case is 1/(α(γ)u1).

To summarize the first three theorems, if 2N << 1/u1 then the waiting time for the first

B mutant to appear in the population, τB, is approximately exponential under the following

conditions:

assumption EτB

Theorem 1 2N >> 1/
√

u2 1/2Nu1
√

u2

Theorem 2 2N << 1/
√

u2 1/u1

Theorem 3 2N
√

u2 →
√

γ 1/(α(γ)u1)

Deleterious A mutants: Suppose now that A mutants have fitness r < 1, and return

to the case of intermediate population size defined by (1).

Theorem 4. Suppose 1/
√

u2 << 2N << 1/u1 and that 1− r ≈ ρ
√

u2, where ρ is a constant

that measures the strength of selection against type A mutants. The probability P (t) that the

B mutation has occurred in some member of the population by time t

P (t) ≈ 1− exp(−2Nu1R
√

u2t) where R =
1

2

(√
ρ2 + 4− ρ

)
(5)

The proof of this is somewhat involved so we refer the reader to IWASA et al. (2005) for

details. In words, the conclusion says that the waiting time in the non-neutral case is still
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exponential, but the mean has been multiplied by 1/R. Note that when ρ = 0, R = 1 which

is the neutral case. Thus, A mutants are essentially neutral when ρ ≈ 0 which is true when

1 − r <<
√

u2. When ρ is large,
√

ρ2 + 4 ≈ ρ + 2/ρ (since (ρ + 2/ρ)2 = ρ2 + 4 + 4/ρ2) and

we have 1/R ≈ ρ. Therefore, as ρ increases the waiting time increases.

Kimura (1985) considered compensatory mutations which are related to the situation

studied in Theorem 4. His model has four genotypes AB, A′B, AB′, and A′B′, where A

and B are wild type alleles with corresponding mutant alleles A′ and B′. The single mutant

genotypes A′B and AB′ have fitness 1 − s while AB and A′B′ have fitness 1. Assuming

s >> v, the mutation rate, he used diffusion theory to conclude that the average time for the

fixation of the double mutant was, see his (16) and (17) and take h = 0,

4Ne

∫ 1

0

exp(−Sη2/2)η−V

∫ η

0

exp(Sξ2/2)
ξV−1

1− ξ
dξ dη

where S = 4Nes and V = 4Nev. Evaluating the expression above numerically he concluded

that the fixation time was surprisingly short. Note that his result covers a different range of

parameters since Theorem 4 supposes 4Nv << 1. However, stochastic tunneling still occurs.

Kimura shows that the frequency of single mutants remains small until the second mutation

occurs.

SIMULATION RESULTS

The results in the previous section are theorems about the limit as N → ∞, and their

proofs are based on arguing that various complications can be ignored, so we will now turn

to simulations to show that the approximations are good for even relatively small values

of N . We will use a standard algorithm, described in the next paragraph, to simulate the

continuous time Markov chain X(t) which counts the number of A mutants in the population

at time t. Readers not interested in the details of our simulation algorithm can skip the next
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paragraph.

Let T0 = 0 and for m ≥ 1 let Tm be the time of the mth jump of X(t). If X(Tm) = 0, we

let tm+1 be exponential with mean 1/(2Nu1), and set Tm+1 = Tm + tm+1 and X(Tm+1) = 1.

If X(Tm) = k with 1 ≤ k < 2N , then we let tm+1 be exponential with mean 1/(pk + qk + rk)

where pk is the rate of jumps to k + 1, qk is the rate of jumps to k − 1, and rk is the rate

an A mutant replaces an A mutant, as defined in the following table. Note that the second

term in pk accounts for new A mutants that enter the population.

k → k + 1 at rate pk =
k(2N − k)

2N
+ (2N − k)u1

k → k − 1 at rate qk =
k(2N − k)

2N

k → k at rate rk =
k2

2N

We set X(Tm+1) = k + 1 with probability pk/(pk + qk + rk), X(Tm+1) = k with probability

rk/(pk + qk + rk), and X(Tm+1) = k − 1 with probability qk/(pk + qk + rk). In the first two

cases there is a probability u2 of a B mutation. We stop the simulation the first time a B

mutant appears or X(Tm) = 2N . If an A mutant goes to fixation, we add an exponential

with mean 1/(2Nu2) to the final time to simulate waiting for the B mutation to appear.

Let n = 2N . Since our aim is to show that the theoretical predictions work well even

for small values of n, we will, in most cases, consider the values n = 1, 000 and n = 10, 000.

Table 1 gives the seven simulation scenarios we study. Table 2 compares the predicted mean

time from Theorem 1 with the average time found in 10,000 replications of each simulation.

In making predictions for the examples, we consider that any numbers a and b satisfy a << b

if a/b ≤ 1/10. In case 3 our assumption 1/
√

u2 << n << 1/u1 (1) about intermediate

population size holds, and we can see that the simulated mean is very close to the predicted

mean. In cases 1 and 5, we replace the upper and lower inequalities in (1) by equality,

respectively, so in each case one of the two assumptions is not valid. Cases 2 and 4 are
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intermediate, meaning that the upper and lower inequalities in (1), respectively, don’t quite

hold since the ratios are 1/4. Yet, cases 2 and 4 show good agreement with the predicted

mean.

The last two cases are specific examples related to regulatory sequence evolution in

Drosophila and humans, which we will consider in more detail in the next section. The

Drosophila effective population size is too large to use the true value in the simulations, but

this is feasible for humans. In addition, we multiply u2 by 1/3 for these special cases so that

the ratio u1/u2 = 30. This comes from our assumption that a mutation at any position in

the binding site will damage it, but to create a new binding site we require one position to

mutate to the correct letter. Given a 10 letter target binding site, then u1 is 3 × 10 times

bigger than u2.

In Figure 2, we plot the observed waiting time/predicted mean for case 3 and see a good

fit to the exponential distribution, which agrees with our theoretical prediction. Figure 3

corresponds to case 1 and shows that the tail of the distribution looks exponential, but the

simulated mean time is roughly 1.5 times larger than the predicted mean. This is caused

by the fact that since u1 = 1/(2N), the time τB − σB we have to wait for the B mutant to

be produced is of the same order of magnitude as σB. Hence, the total waiting time τB is

significantly larger than σB.

To explain the observed shape of the distribution, recall from the sketch of the proof of

Theorem 1 that σB has exactly an exponential distribution. Adding the independent random

variable τB−σB, which we will assume has density g(s), yields the following distribution for

τB: ∫ t

0

e−(t−s)g(s)ds = e−t

∫ t

0

esg(s)ds ≈ te−tg(0) when t is small

since the integrand is close to g(0) for all s ∈ [0, t], and consequently, the exponential fit is
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not good for small t. WODARZ and KOMAROVA (2005) have done an exact calculation

of the waiting time in the branching process approximation of the Moran model, which

applies to case 1. As Figure 3 shows, the computation matches the Moran model simulation

exceptionally well.

Figure 4 corresponds to case 5 and yields a simulated mean of about 78% of its predicted

value. The curve looks exponential, but it has the incorrect mean. In this case, Theorem 3

shows that fixation of an A mutation and stochastic tunneling are both possible scenarios

in which a B mutation can arise, producing a shorter waiting time. More specifically, the

assumptions of Theorem 3 hold with γ = 1 which gives α = 1.433, and Figure 3 shows that

the exponential distribution with this rate fits the simulated data reasonably well.

EXPERIMENTAL RESULTS

In the following two examples, we consider a 10 nucleotide binding site and suppose that

transcription factor binding requires an exact match to its target. We assume that any mu-

tation within the binding site will damage it (A mutation) and that there exists at least one

10 nucleotide sequence within the regulatory region that can be promoted to a new bind-

ing site by one mutation (B mutation). Our previous results show, as MACARTHUR and

BROOKFIELD (2004) had earlier observed, that the existence of these so-called “presites”

is necessary for the evolution of new binding sites on a reasonable time scale (DURRETT

and SCHMIDT 2007).

Drosophila: We will assume a per nucleotide mutation rate of 10−8 per generation, a

simplification of the values that can be found in the classic paper of DRAKE et al. (1998)

and the recent direct measurements of HAAG-LIAUTARD et al. (2007). If transcription

factor binding involves an exact match to a 10 nucleotide target then inactivating mutations

have probability u1 = 10−7 and those that create a new binding site from a 10 letter word
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that doesn’t match the target in one position have probability u2 = 1/3×10−8. If the target

word is 6–9 nucleotides long or inexact matches are possible, then these numbers may change

by a factor of two or three. Such details are not very important here, since our aim is to

identify the order of magnitude of the waiting time.

We will set the effective population size N = 2.5× 106 which agrees with the value given

on page 1612 of THORNTON and ANDOLFATTO (2006). In order to apply Theorem 1 we

need

1/
√

u2 = 1.73× 104 << 2N = 5× 106 << 1/u1 = 107

The ratio of the left number to the middle number is ≈ 1/300, but the ratio of the middle

number to the one on the right is 1/2 which says that 2N << 1/u1 is not a valid assumption.

Ignoring this for a moment, Theorem 1 predicts a mean waiting time of

1

2Nu1
√

u2

=
1.73

5
× 10−6+7+4 ≈ 34, 600 generations

which translates into 3,460 years if we assume 10 generations per year.

Since the assumption 2N << 1/u1 is not valid, we use our simulation result for case

6, which has a small population size with parameter values of 2Nu1 = 0.5 and 2N
√

u2 =

10/
√

3 = 5.77 similar to the Drosophila example, to see what sort of error we expect (see

Tables 1 and 2). We see that in the simulation, the observed mean is approximately 25%

higher than the theoretical mean, so adding 25% to the prediction gives a mean waiting time

of 4,325 years.

A second and more important correction to our prediction is that Theorem 1 assumes

that the A mutation is neutral and the B mutation is strongly advantageous. If we make the

conservative assumption that the B mutation is neutral then the fixation probability β =

1/2N = 2× 10−7, and by Theorem 1 the waiting time increases by a factor of 1/
√

β ≈ 2200
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to about 9 million years. If the B mutation is mildly advantageous, i.e., s− 1 = 10−4, then

β ≈ 10−4 and the waiting time increases only by a factor of 100 to 400,000 years.

If we assume that A mutants have fitness r < 1 where 1− r <<
√

u2 = 5.78× 10−5 then

Theorem 4 implies that the waiting time is not changed but if (1 − r)/
√

u2 = ρ then the

waiting time is increased by a factor 2/(
√

ρ2 + 4− ρ) ≈ ρ if ρ is large. If we use the value of

1 − r = 10−4 the increase is roughly a factor of 2. From this we see that if both mutations

are almost neutral (i.e. relative fitnesses r ≈ 1 − 10−4 and s ≈ 1 + 10−4), then the switch

between two transcription factor binding sites can be done in less than a million years. This

is consistent with the results for the even-skipped stripe 2 enhancer mentioned earlier.

Humans: We will now show that two coordinated changes that turn off one regulatory

sequence and turn on another without either mutant becoming fixed are unlikely to occur

in the human population. We will assume a mutation rate of 10−8, again see DRAKE et

al. (1998), and an effective population size of N = 104 because this makes the nucleotide

diversity 4Neµ close to the observed value of 0.1%. If we again assume that transcription

factor binding involves an exact match to a 10 nucleotide target then inactivating mutations

have probability u1 = 10−7, and those that create a new binding site from a 10 letter word

that doesn’t match the target in one position have probability u2 = 3.3 × 10−9. For the

assumptions of Theorem 1 to be valid we need

1/
√

u2 = 1.73× 104 << 2N = 2× 104 << 1/u1 = 107

The ratio of the middle number to the one on the right is 1/500, but the ratio of the left

number to the middle one is ≈ 1.

Ignoring for the moment that one of the assumptions is not satisfied, Theorem 1 predicts
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a mean waiting time of

1

2Nu1
√

u2

=
1.73

2
× 107 = 8.66× 106 generations

Multiplying by 25 years per generation gives 216 million years.

As shown in Tables 1 and 2, we have simulation results for humans using the exact

parameters above. In 10,000 replications, the simulation mean is 6.46 million generations

which is only about 75% of the predicted value. Multiplying by 0.75 reduces the mean

waiting time to 162 million years, still a very long time. Our previous work has shown that,

in humans, a new transcription factor binding site can be created by a single mutation in

an average of 60,000 years, but, as our new results show, a coordinated pair of mutations

that first inactivates a binding site and then creates a new one is very unlikely to occur on

a reasonable time scale.

To be precise, the last argument shows that it takes a long time to wait for two prespecified

mutations with the indicated probabilities. The probability of a 7 out of 8 match to a specified

8 letter word is 8(3/4)(1/4)7 ≈ 3.7× 10−4, so in a 1 kb stretch of DNA there is likely to be

only one such match. However, LYNCH (2007, see page 805) notes that transcription factor

binding sites can be found within a larger regulatory region (104−106 bp) in humans. If one

can search for the new target sequence in 104 − 106 bp, then there are many more chances.

Indeed since (1/4)8 ≈ 1.6× 10−5, then in 106 bp we expect to find 16 copies of the 8 letter

word.

The edge of evolution? Our final example of waiting for two mutations concerns

the emergence of chloroquine resistance in P. falciparum. Genetic studies have shown, see

WOOTON et al. (2002), that this is due to changes in a protein PfCRT, and that in the

mutant strains two amino acid changes are almost always present - one switch at position

76 and another at position 220. This example plays a key role in the chapter titled “The
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Mathematical Limits of Darwinism” in Michael Behe’s book, The Edge of Evolution.

Arguing that (i) there are a trillion parasitic cells in an infected person, (ii) a billion

infected persons on the planet, and (ii) chloroquine resistance has only arisen ten times

in the last fifty years, he concludes that the odds of one parasite developing resistance to

chloroquine, an event he calls a chloroquine complexity cluster or CCC, is roughly 1 in 1020.

Ignoring the fact that humans and P. falciparum have different mutation rates he then

concludes that “On the average, for humans to achieve a mutation like this by chance, we

would have to wait a hundred million times ten million years,” which is five million times

larger than the calculation we have just given.

Indeed his error is much worse. To further sensationalize his conclusion, he argues that

“There are 5000 species of modern mammals. If each species had an average of a million

members, and if a new generation appeared each year, and if this went on for two hundred

million years, the likelihood of a single CCC appearing in the whole bunch over that entire

time would only be about 1 in 100.” Taking 2N = 106 and µ1 = µ2 = 10−9, Theorem 1

predicts a waiting time of 31.6 million generations for one prespecified pair of mutations in

one species, with
√

u2 having reduced the answer by a factor of 31,600.

We are certainly not the first to have criticized Behe’s work. LYNCH (2005) has written

a rebuttal to BEHE and SNOKE (2004), which is widely cited by proponents of intelligent

design (see the Wikipedia article on Michael Behe). BEHE and SNOKE (2004) consider

evolutionary steps that require changes in two amino acids and argue that to become fixed

in 108 generations would require a population size of 109. One obvious problem with their

analysis is that they do their calculations for N = 1 individual ignoring the population

genetics effects that produce the factor of
√

u2. LYNCH (2005) also raises other objections.

CONCLUSIONS
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For population sizes and mutation rates appropriate for Drosophila, a pair of mutations

can switch off one transcription factor binding site and activate another on a time scale of

several million years, even when we make the conservative assumption that the second mu-

tation is neutral. This theoretical result is consistent with the observation of rapid turnover

of transcription factor binding sites in Drosophila and gives some insight into how these

changes might have happened. Our results show that when two mutations with rates u1 and

u2 have occurred and

1/
√

u2 << 2N << 1/u1

then the first one will not have gone to fixation before the second mutation occurs, and

indeed A mutants will never be more than a small fraction of the overall population. In

this scenario, the A mutants with fitness r are significantly deleterious if (1 − r)/
√

u2 is

large, a much less stringent condition than the usual condition that 2N(1− r) is large. Also,

the success probability of the B mutant is dictated by its fitness relative to the wild type

rather than relative to the A mutant. This follows because the fraction of A mutants in the

population is small when the B mutant arises, and hence most individuals are wild type at

that time.

The very simple assumptions we have made about the nature of transcription factor

binding and mutation processes are not crucial to our conclusions. Our results can be applied

to more accurate models of binding site structure and mutation processes whenever one can

estimate the probabilities u1 and u2. However, the assumption of a homogeneously mixing

population of constant size is very important for our analysis. One obvious problem is that

Drosophila populations undergo large seasonal fluctuations, providing more opportunities

for mutation when the population size is large, and a greater probability of fixation of an

A mutation during the recurring bottlenecks. Thus, it is not clear that one can reduce to a
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constant size population, or that the effective population size computed from the nucleotide

diversity is the correct number to use for the constant population size. A second problem is

that in a subdivided population, A mutants may become fixed in one subpopulation giving

more opportunities for the production of B mutants, or perhaps leading to a speciation

event. It is difficult to analyze these situations mathematically, but it seems that each of

them would increase the rate at which changes occur. In any case one would need to find a

mechanism that changes the answer by a significant factor in order to alter our qualitative

conclusions.
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Parameters

u1
√

u2

Case 1 1/n 10/n

Case 2 1/4n 10/n

Case 3 1/10n 10/n

Case 4 1/10n 4/n

Case 5 1/10n 1/n

Drosophila 1/2n 10/
√

3n

Humans 2/1000n 2/
√

3n

Table 1: Parameter values for our simulations in terms of n = 2N .
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Comparison of mean waiting times

Population Size Predicted Mean Simulated Mean Sim/Pred

Case 1 1,000 100 156.5 1.565

10,000 1,000 1,559 1.559

Case 2 1,000 400 460.0 1.150

10,000 4,000 4,552 1.138

Case 3 1,000 1,000 1,047 1.048

10,000 10,000 10,414 1.041

Case 4 1,000 2,500 2,492 0.997

10,000 25,000 2,5271 1.011

Case 5 1,000 10,000 7,811 0.781

10,000 100,000 77,692 0.777

Drosophila 1,000 346.4 441.1 1.273

10,000 3,464 4,374 1.263

Humans 20,000 8,660,258 6,464,920 0.747

Table 2: Mean waiting times for n = 1, 000 and n = 10, 000 with mutation rates u1 and u2 as

defined by each case. The simulated mean time is compared with the predicted mean from

Theorem 1 and the ratio is given in the last column. All simulations are done with 10,000

replications.
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Figure 1: An example of our general two stage mutation process used in this paper is as

follows. The regulatory region contains two possible binding sites, a and b, where a prime

denotes an inactivated site. Wild type individuals can undergo a type A point mutation (a

b’ → a’ b’ at rate u1) which inactivates site a, and type A individuals can undergo a type

B point mutation (a’ b’ → a’ b at rate u2) which creates a new active site b. The relative

fitnesses of wild type, A mutant, and B mutant are 1, r, and s, respectively. Note that in

this case, wild type individuals cannot produce individuals with a second active binding site.

For a different example of this general process, see page 955 of CARTER and WAGNER

(2002).
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Figure 2: Waiting time for case 3 with n = 1, 000 and u1 = u2 = 0.0001. The assumptions

for intermediate population size as compared to mutation rates (1) hold and, as predicted

by Theorem 1, the waiting time is a good fit to the exponential distribution.
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Figure 3: Waiting time for case 1 with n = 1, 000, u1 = 0.001, and u2 = 0.0001. The tail of

the waiting time distribution appears to be exponential, but the simulated mean is about 1.5

times larger than predicted by Theorem 1. The thick curve corresponds to the waiting time

calculation done by Wodarz and Komarova (2005). This computation matches our Moran

model simulation exceptionally well.
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Figure 4: Waiting time for case 5 with n = 1, 000, u1 = 0.0001, and u2 = 0.000001.

The simulated mean is only about 78% of the mean predicted by Theorem 1, however, the

waiting time distribution still is approximately exponential. Theorem 3 holds with γ = 1 so

α = 1.433, and the exponential with this rate gives a reasonable fit to the simulated data.
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