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SPATIAL MORAN MODELS
I. STOCHASTIC TUNNELING IN THE NEUTRAL CASE

BY RICHARD DURRETT1 AND STEPHEN MOSELEY2

Duke University

We consider a multistage cancer model in which cells are arranged in
a d-dimensional integer lattice. Starting with all wild-type cells, we prove
results about the distribution of the first time when two neutral mutations
have accumulated in some cell in dimensions d ≥ 2, extending work done by
Komarova [Genetics 166 (2004) 1571–1579] for d = 1.

1. Introduction. The accumulation of mutations is important not only for
cancer initiation, progression, and metastasis, but also for the emergence of ac-
quired resistance against chemotherapeutics, radiation therapy, or targeted drugs.
For this reason there is a large and growing literature on the waiting time τk un-
til some cell has acquired k prespecified mutations. In all the models we consider,
type i individuals mutate to type (i+1) at rate ui+1. The dynamics considered have
most often been studied in multi-type Moran models with a homogeneously mix-
ing population of constant size. Here we will concentrate on how results change
when one considers a spatial Moran models, and as is the case for much earlier
work we will concentrate on the behavior of τ2.

We suppose that cells of type 0 and type 1 have relative fitness 1 and λ. Since
we will only consider the waiting time for the first type 2, the relative fitness of
type 2’s is not important. In this work we will consider situation in which λ is
so close to 1 that the mutations are essentially neutral. For cancer applications,
this is a restrictive assumption, and it will be removed in the companion paper
(part II) by Durrett, Foo and Leder [6]. However, the current result applies to the
important case of tumor suppressor genes. In that case, when both copies of the
gene are inactivated trouble develops, but while there is one working copy the cell
can function normally.

We begin by recalling results for the Moran model in a homogeneously mixing
population of size N . Here and in what follows the mutation rates ui and selec-
tion coefficient λ depend on N , even though this is not indicated in the notation,
and we write aN � bN if aN/bN → 0 as N → ∞. The next result made its first
appearance on page 16,230 of Nowak et al. [17]. Since then it has appeared in
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print a number of times: [10, 11, 14, 18], and in Nowak’s excellent book [16] on
Evolutionary Dynamics.

THEOREM 1. In the neutral case of the Moran model, λ = 1, if we assume
that

1√
u2

� N � 1

u1
(1)

and let u1, u2 → 0 then we have

P
(
τ2 > t/Nu1u

1/2
2

) → exp(−t).

The same conclusion holds if |λ − 1| � u
1/2
2 .

Durrett and Schmidt [7] applied these ideas to study regulatory sequence evo-
lution and to expose flaws in Michael Behe’s arguments for intelligent design.
Durrett, Schmidt and Schweinsberg [8], see also Schweinsberg [19], generalized
this result to cover τk .

The conditions in the result may look mysterious but they can be derived
by simple reasoning. Here and throughout the paper and f (u) ∼ g(u) means
f (u)/g(u) → 1 as u → 0. Suppose first that λ = 1.

(A1) If we start the Moran model with k � N type 1’s and the rest type 0,
then the 1’s behave like a critical branching process. The time needed for the 1’s
to die out is O(k) and the number of type-1 births before they die out is O(k2).
Thus we expect the first type 2 to occur in a type-1 family that reaches size k1 =
O(1/

√
u2), and hence has O(k2

1) = O(1/u2) births. The condition 1/
√

u2 � N

in (1) guarantees k1 � N .
(A2) Since the voter model is a martingale, the probability a type-1 mutation

creates a family that reaches size 1/
√

u2 is
√

u2. More to the point a simple com-
putation (consider what happens at the first jump) shows that the probability a
type-1 family gives rise to a type 2 before it dies out is ∼ √

u2. Since mutations to
type 1 occur at times of a rate Nu1 Poisson process and with probability ∼ √

u2
give rise to a type 2, it follows that if ρ2 is the birth time of the type-1 mutant that
first gives rise to a type 2 then

P
(
ρ2 > t/Nu1u

1/2
2

) → exp(−t).

To complete the proof we need to show that τ2 − ρ2 � ρ2, and for this we need
the condition N � 1/u1 in (1).

(A3) By the discussion of (A1), the first mutation will occur in a family that
reaches a size O(1/

√
u2). If |λ − 1| � u

1/2
2 , then computations with Girsanov’s

formula show that (in the limit u2 → 0) the behavior of the Moran model, while it
is O(1/

√
u2), is indistinguishable from the case with no drift.
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The assumption of a homogeneously mixing cell populations simplifies cal-
culations considerably, but is not realistic for solid tumors. For this reason, Ko-
marova [12] considered a spatial model, which is very similar to one introduced
much earlier by Williams and Bjerknes [20]. Due to work of Bramson and Grif-
feath [2, 3], the second model is known to probabilists as the biased voter model.

In the usual formulation of the biased voter model, each site on the d-dimen-
sional integer lattice Z

d can be in state 0 or 1 indicating the presence of a cell with
relative fitness 1 or λ > 1. Cells give birth at a rate equal to their fitness, and the
offspring replaces a nearest neighbor chosen at random. When λ = 1 this is the
voter model which was introduced independently by Clifford and Sudbury [4] and
Holley and Liggett [9]. For a summary of what is known see Liggett [15].

In the biased voter model births drive the process. In Komarova’s version cells
die at rate 1 and are replaced by a copy of a nearest neighbor chosen with proba-
bility proportional to its fitness. A site with ni neighbors in state i makes

transitions at rate
0 → 1 λn1/(λn1 + n0)

1 → 0 n0/(λn1 + n0)

In d = 1 if the set of sites in state 1 is an interval [�, r] with � < r then any
site that can change has n1 = n0 = 1 so Komarova’s model is a time change of the
biased voter model. In d ≥ 2 this is not exactly true. However, we are interested
in values of λ = 1 + s where s = 0.02 or even less, so we expect the two models
to have very similar behavior. In any case, the difference between the two models
is much less than their difference from reality, so we will choose to study the bi-
ased voter, whose duality with branching coalescing random walk (to be described
below) gives us a powerful tool for doing computations.

Since we want a finite cell population we will restrict our process to be a subset
of (−L/2,L/2]d . Komarova [12] uses “Dirichlet boundary conditions”, that is,
she assumes her space is an interval with no cells outside, but this is awkward
because the set of type-1 cells may reach one end of the interval and then no
further changes happen at that end. To avoid this, we will use periodic boundary
conditions, that is, we consider (Z mod L)d . The resulting toroidal geometry is a
little strange for studying cancer. However, using (Z mod L)d has the advantage
that the space looks the same seen from any point. Our results will show that for
the parameter values the first type 2 will arise when the radius of the set of sites
occupied by 1’s is � L so the boundary conditions do not matter.

Let ξ0
s be the set of cells equal to 1 in the voter model with no mutations from 0

to 1 on Z
d starting from a single type 1 at 0. Let |ξ0

s | be the number of cells in ξ0
s ,

and let

νd = 1 − E exp
(
−u2

∫ T0

0

∣∣ξ0
s

∣∣ds

)
.(2)

This quantity, which is defined for the voter model without mutation, calculates
the probability, which depends on the dimension d , that a mutation to type 1 gives
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rise to a type 2 before its family dies out. To see why this is true note that the

integral
∫ T0

0 |ξ0
s |ds gives the total number of man-hours in the type-1 family, and

conditional on this the number of mutations that will occur is Poisson with mean
u2

∫ T0
0 |ξ0

s |ds.
Since mutations to type 1 in a population of N cells occur at rate Nu1 this

suggests that

P(τ2 > t) → exp(−Nu1νdt).(3)

As we will explain in a moment, there is a constant γd so that νd ∼ γdhd(u2) as
u2 → 0 where

hd(u) =
⎧⎪⎨⎪⎩

u1/3, d = 1,
u1/2 log1/2(1/u), d = 2,
u1/2, d ≥ 3.

(4)

To state the result we need one more definition:

gd(u) =
⎧⎪⎨⎪⎩

u1/3, d = 1,
log−1/2(1/u), d = 2,
1, d ≥ 3.

(5)

THEOREM 2. In the neutral case of the biased voter model, λ = 1, if we as-
sume

1

hd(u2)
� N � gd(u2)

u1
,(6)

then there are constants γd given in (12) and (13) so that as u1, u2 → 0

P
(
τ2 > t/Nu1γdhd(u2)

) → exp(−t).

The same conclusion holds if |λ − 1| � hd(u2).

In d = 1 this result was proved by Komarova [12], see her equation (62) and
assumption (60), then change notation u1 → u, u2 → u1. See also her survey pa-
per [13]. Note that when d ≥ 3 the order of magnitude of the waiting time and
the assumptions are the same as in Theorem 1. In d = 2 there are logarithmic
corrections to the behavior in Theorem 1, so only in the case of d = 1 (which is
relevant to cancer in the mammary ducts) does space make a substantial change in
the waiting time.

The reasons for the conditions in Theorem 2 are the same as in Theorem 1.

(B1) We will see that the mutation to type 2 will occur in a type-1 family that
reaches size k = O(1/hd(u2)). The left-hand side assumption in (6) implies that
k � N , so the type-2 mutant arises before the 1’s reach fixation.
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(B2) Let ρ2 be the time of the first type-1 mutation that begins the family that
eventually leads to a type 2. Since mutations to type 1 occur at rate Nu1 and lead
to a type 2 with probability νd , it is easy to see that

P(ρ2 > t) → exp(−Nu1νdt)

so to prove the result we need to show that with high probability τ2 − ρ2 � ρ2. As
the reader will see, this is guaranteed by the right-hand side assumption in (6).

(B3) As in the discussion of Theorem 1, once we know that the mutation to
type 2 will occur in a type-1 family that reaches size k = O(1/hd(u2)), it follows
that if |λ − 1| � hd(u2) then (in the limit u2 → 0) the behavior of the size of the
biased voter |ξ0

t | is, while it is O(1/hd(u2)), indistinguishable from the case with
no drift.

2. The key to the proof. The size of the voter model, when |ξ0
t | > 0, is a time

change of symmetric simple random walk, with jumps happening at two times the
size of the boundary |∂ξ0

t |, which is the number of nearest neighbor pairs with
x ∈ ξ0

t and y /∈ ξ0
t . The one-dimensional case is easy because when ξ0

t 	= ∅ the
boundary |∂ξ0

t | = 2. The key to the study of the process in d ≥ 2 is the observation
that there are constants βd so that

∣∣∂ξ0
t

∣∣ ∼p

{
2dβd

∣∣ξ0
t

∣∣, d ≥ 3,

4β2
∣∣ξ0

t

∣∣/ log
(|ξ0

t |), d = 2,
(7)

where |∂ξ0
t | ∼p f (|ξ0

t |) means that when |ξ0
t | is large, |∂ξ0

t |/f (|ξ0
t |) is close to 1

with high probability.
The intuition behind this result is that the voter model is dual to a collection of

coalescing random walks, so in d ≥ 3 neighbors of points in ξ0
t will be unoccupied

with probability ≈ βd , the probability two simple random walks started at 0 and
e1 = (1,0, . . . ,0) never hit. In dimension d = 2, the recurrence of random walks
implies that when |ξ0

t | = k is large, most neighbors of points in ξ0
t will be occupied,

but due to the fat tail of the recurrence time sites will be vacant with probability
∼ β2/ logk, where β2 = π .

Before we try to explain why (7) is true, we will list an important consequence.
Let Tk be the first time |ξ0

t | = k. Let

an =
⎧⎪⎨⎪⎩

n2, d = 1,
2n logn, d = 2,
n, d ≥ 3.

LEMMA 1. Let ξ0
t be the unbiased voter model (i.e., λ = 1) starting from a

single occupied site. ( |ξ0
Tnε+ant |

n

∣∣∣∣Tnε < ∞
)

⇒ (Yt |Y0 = ε),(8)
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where ⇒ indicates convergence in distribution of the stochastic processes and the
limit has

dYt =
{√

2dBt , d = 1,√
2βdYt dBt , d ≥ 2,

where Bt is a one-dimensional Brownian motion. In d = 1 the process is stopped
when it hits 0. In d ≥ 2, 0 is an absorbing boundary so we do not need to stop the
process.

In d = 1 this result is trivial. If one accepts (7) then (8) can be proved easily
by computing infinitesimal means and variances and using standard weak con-
vergence results. In d ≥ 2, (7) and (8) are almost consequences of work of Cox,
Durrett and Perkins [5]. They speed up time at rate an, scale space by 1/

√
an,

and assign each point occupied in the voter model mass 1/n to define a measure-
valued diffusion Xn which they prove converges to super-Brownian motion. See
their Theorem 1.2. (Their scaling is a little different in d = 2 but this makes no
difference to the limit.)

Let V ′
n,s(x) be the fraction of sites adjacent to x in state 0 at time s (with the

prime indicating that we multiply this by logn in d = 2, see page 196). A key step
in the proof in [5] is to show, see (I1) on page 202, that for nice test functions φ

E

[(∫ T

0
Xn

s

({
V ′

n,s − βd

}
φ2)

ds

)2]
→ 0,(9)

where Xn
s (f ) denote the integral of the function f against the measure Xn

s . The
result in (9) shows that when we integrate in time and average in space (multiplying
by a test function to localize the average) then (7) is true.

From the convergence of the measure valued diffusion Xn to super-Brownian
motion, (8) follows by considering the total mass. Earlier we said (8) is almost a
consequence of [5], since they start their process from an initial measure [i.e., O(n)

initial 1’s] while consider a single occupied site and condition on reaching nε.
However, this defect can be remedied by citing the work of Bramson, Cox and
LeGall [1], who have a result, Theorem 4 on page 1012 that implies (8) in d ≥ 2.

The result in (8) is enough for Section 3, but for the calculations in Section 4 we
will need a version of (7). In that section we will compute under the assumption
that if |ξ0

t | = k ∣∣∂ξ0
t

∣∣ =
{

2dβdk, d ≥ 3,
4β2k/ log k, d = 2.

(10)

If one wants to give a rigorous proof of the estimates there, then small values of k,
can be treated with the inequalities

Ck1/d ≤ ∣∣∂ξ0
t

∣∣ ≤ 2dk,

and one can control large values of k using (9) and estimates such as (J1) and (J2)
on page 208 of [5]. We will assume (10) in order to avoid getting bogged down in
technicalities.
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3. Proof, part I. Let νε
d be the probability defined in (2) ignoring mutations

to type 2 that occur before Tnε . The size of the voter model, |ξ0
t |, is a martingale,

so if we let P1 to denote the law of the voter model starting from one occupied site
P1(Tnε < ∞) = 1/nε. Applying (8) now,

νε
d ∼ 1

nε
·
[
1 − Eε exp

(
−nanu2

∫ T0

0
Ys ds

)]
,(11)

where T0 = min{t :Yt = 0}, Eε is the expected value for (Yt |Y0 = ε). We have

nan =
⎧⎪⎨⎪⎩

n3, d = 1,
2n2 logn, d = 2,
n2, d ≥ 3.

So if we set n = 1/hd(u2) then (4) implies nanu2 → 1 and using (11) gives

νε
d ∼ hd(u2) ·

[
1 − Eε exp(− ∫ T0

0 Ys ds)

ε

]
.

Thus the type-2 mutation will occur in a family that reaches sizes O(1/hd(u2)),
and we must assume 1/hd(u2) � N .

If we ignore the time to reach size 1/hd(u2), the time needed to generate the
type-2 mutation is, by (8), of order

a
(
1/hd(u2)

) ∼

⎧⎪⎪⎨⎪⎪⎩
u

−2/3
2 , d = 1,

2u
−1/2
2 log1/2(1/u2), d = 2,

u
−1/2
2 , d ≥ 3,

where we have written a(n) for an for readability. Thus for (B2) we need
a(1/hd(u2)) � 1/Nu1hd(u2), which means N � gd(u2)/u1.

The next order of business is to compute νd . Stochastic calculus (or calculations
with infinitesimal generators) tells us that

v(x) = Ex exp
(
−

∫ T0

0
Ys ds

)
is the unique function on [0,∞) with values in [0,1], v(0) = 1 and

v′′ − xv = 0 in d = 1, βdxv′′ − xv = 0 in d ≥ 2.

In d = 1 all solutions have the form:

v(x) = αAi(x) + βBi(x),

where Ai and Bi are Airy functions

Ai(x) = 1

π

∫ ∞
0

cos
(

t3

3
+ xt

)
dt,

Bi(x) = 1

π

∫ ∞
0

exp
(
− t3

3
+ xt

)
+ sin

(
t3

3
+ xt

)
dt.
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Since Bi is unbounded and Ai is decreasing on [0,∞), we take β = 0 and set
α = 32/3�(2/3) to satisfy the boundary condition, v(0) = 1. Letting ε → 0 we
conclude that

γ1 = −αAi ′(0) = 31/3�(2/3)/�(1/3).(12)

In d ≥ 2, v(x) = exp(−β
−1/2
d x), and we have

γd = β
−1/2
d .(13)

4. Proof, part II: Missing details for λ = 1. In the previous section we have
calculated the probability νε

d that a type-1 family reaches size ε/hd(u2) and then
gives rise to a type 2. To let ε → 0 and prove Theorem 2 we need to consider the
possibility of a mutation to type 2 in a family that (i) never reaches size nε, or
(ii) will reach nε but has not yet. To have a convenient name we will call these
small families. Families of the first kind arise at rate Nu1(1 − 1/nε) and families
of the second kind arise at rate Nu1/nε. We will now calculate the expected rate
at which type 2’s are born from these small families. In the proof of Theorem 2,
we will let ε → 0 slowly as n → ∞ so we can and will assume nε → ∞.

Consider the voter model ξ0
t starting from a single 1 at the origin at time 0.

Let Vk be the total time spent at level k, that is, |{t : |ξ0
t | = k}| and let Nk be the

total number of returns to level k before leaving the interval (0, nε). Recalling our
assumption in (10), we let q(k) the rate jumps occur at level k.

Let Sk be the embedded discrete time chain, which is a simple random walk,
and let T +

k = min{n ≥ 1 :Sn = k}.

E1

(∫ T0

0

∣∣ξ0
s

∣∣ds

∣∣∣∣T0 < Tnε

)
= E1

(
nε∑

k=1

kVk

∣∣∣∣T0 < Tnε

)

= E1

(
nε∑

k=1

kNk

q(k)

∣∣∣∣T0 < Tnε

)
(14)

=
nε∑

k=1

�P1(Tk < ∞)

�Pk(T
+
k > T0)

k

q(k)
,

where the bar indicates conditioning on T0 < Tnε . A similar argument shows that

E1

(∫ Tnε

0

∣∣ξ0
s

∣∣ds

∣∣∣∣Tnε < T0

)
=

nε∑
k=1

1

P̂k(T
+
k > Tnε)

k

q(k)
,(15)

where the hat indicates conditioning on Tnε < T0.
The three conditional probabilities we need can be computed using facts about

simple random walk that follow from the fact that it is a martingale.

�P1(Tk < ∞) = P1(Tk < ∞)Pk(T0 < Tnε)

P1(T0 < Tnε)
= (1/k)(1 − k/nε)

(1 − 1/nε)
.(16)
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For the next two we note that the first step has to be in the correct direction for
these events to happen.

�Pk

(
T +

k > T0
) = (1/2)(1/k)

(1 − k/nε)
,(17)

P̂k

(
T +

k > Tnε

) = (1/2)(1/(nε − k))

(k/nε)
.(18)

Thus the expected total man-hours
∫ T0

0 |ξ0
s |ds for a family that will die out before

reaching size nε is

∼ 2

(1 − 1/nε)

nε∑
k=1

(1 − k/nε)2 k

q(k)
,(19)

and in families that have yet to reach size nε,

2

nε

nε∑
k=1

(nε − k)
k2

q(k)
.(20)

The next result shows that the contribution of small families are indeed negligi-
ble. Note that in all three cases the order of magnitude of the contributions from
small families is the same as the overall rate, but contains a constant that → 0 as
ε → 0.

LEMMA 2. The expected total man-hours in small families is

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Nu1u
1/3
2 · ε2

4
, d = 1,

Nu1u
1/2
2 log1/2(1/u2) · 7ε

24β2
, d = 2,

Nu1u
1/2
2 · ε

2dβd

, d ≥ 3.

PROOF. In one dimension, q(k) = 2. The sum in (19) is dominated by∫ nε

0
(1 − x/nε)2x dx = 1

(nε)2

∫ nε

0
y2(nε − y)dy = (nε)2

12
.

Thus, families of the first kind produce type 2’s at rate ≤ Nu1u2(nε)2/12. The
expression in (20) is dominated by

2

nε

∫ nε

0
(nε − x)x2 dx = (nε)3

6
.

Thus, families of the second kind produce type 2’s at rate ≤ Nu1u2(nε)2/6.
Adding the last two conclusions gives the result for d = 1.
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In d ≥ 3, (10) implies q(k) = 2dβdk, so (19) becomes

1

dβd

nε∑
k=1

(1 − k/nε)2.

The sum is bounded above by the integral∫ nε

0
(1 − x/nε)2 dx = nε

3
,

so with our choice of n = u
−1/2
2 , families of the first kind produce type 2’s at rate

bounded above by Nu1u
1/2
2 ε/(3dβd). Setting q(k) = 2dβdk, (20) becomes

1

dβdnε

nε∑
k=1

(nε − k)k.

The sum is bounded above by the integral∫ nε

0
(nε − x)x dx = (nε)3

6
.

Thus, families of the second kind produce type 2’s at rate ≤ Nu1u
1/2
2 ε/(6dβd).

Adding the last two conclusions gives the result for d ≥ 3.
In d = 2, (10) implies q(k) = 4β2k/ log k, so (19) becomes

1

2β2

nε∑
k=1

(1 − k/nε)2 logk.

Each term in the sum is bounded above by log(nε), so the sum is less than
nε lognε. Since n = u

−1/2
2 log−1/2(1/u2), families of the first kind produce type

2’s at rate bounded above by

Nu1u2 · 1

2β2
nε log(nε) = Nu1u2 · 1

2β2
εu

−1/2
2 log−1/2(1/u2) · 1

2
log(1/u2)

= ε

4β2
Nu1u

1/2
2 log1/2(1/u2).

Taking q(k) = 4β2k/ log k, (20) becomes

1

2β2nε

(
nε∑

k=1

(nε − k)k log k

)
.

The sum is bounded above by∫ nε

0
(nε − x)x log(nε) dx ≤ (nε)3

6
log(nε).
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Thus families of the second kind produce type 2’s at rate bounded above by

Nu1u2

nε
· 1

2β2nε
· (nε)3

6
log(nε) = 1

12β2
Nu1u2 · nε log(nε)

= ε

24β2
Nu1u

1/2
2 log1/2(1/u2).

Adding the last two conclusions gives the result for d = 2 and completes the proof.
�

5. Proof, part III: Almost neutral mutations. In the biased voter model,
whose law we denote by P λ, jumps occur at rate 1 + λ times the size of the
boundary. To compensate for this we need to run the unbiased (λ = 1) voter at
rate (1 + λ)/2. If we do this, call the resulting law P̃ 0, and let ωT is a realization
of ξ0

t run up to time T then the Radon–Nikodym derivative

dP λ

dP̃ 0
(ωT ) =

(
2λ

λ + 1

)n+(
2

λ + 1

)n−
,

where n+ and n− are the number of up jumps in ωt when 0 ≤ t ≤ T .
If maxt≤T |ξ0

t | = O(K) then the difference 0 ≤ n+ − n− = O(K). Since under
P̃0, |ξ0

t | is a time change of simple random walk, we see that the total number of
jumps n+ +n− = O(K2). Taking K = 1/hd(u2) and assuming |λ− 1| � hd(u2),
when u2 is small the Radon–Nikodym derivative is

=
(

1 + λ − 1

λ + 1

)n+(
1 − λ − 1

λ + 1

)n−

=
(

1 + λ − 1

λ + 1

)n+−n−(
1 − (λ − 1)2

(λ + 1)2

)n++n−
≈ 1.

The last result implies that (8) extends to almost neutral mutations, and the
computations in Section 2 are valid. To extend the part of the proof in Section 3, we
need to check that (16)–(18) are true asymptotically for almost neutral mutations.
To do this we recall that if a < x < b

P λ
x (Tb < Ta) = θx − θa

θb − θa
where θ = 1/λ.(21)

When 0 ≤ a < x ≤ b = O(1/hd(u2)) and |λ − 1| � hd(u2) we have

P λ
x (Tb < Ta) ≈ x − a

b − a
.

To show that the sums come out the same we need the following uniform version
which follows from (21). If |λ − 1|hd(u2) → 0 then for any C fixed

sup
0≤−a,b≤C/hd(u2)

∣∣∣∣P λ
0 (Tb < Ta)

−a/(b − a)
− 1

∣∣∣∣ → 0.
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