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Abstract The standard linear-quadratic (LQ) survival model for external beam
radiotherapy is reviewed with particular emphasis on studying how different sche-
dules of radiation treatment planning may be affected by different tumour repopu-
lation kinetics. The LQ model is further examined in the context of tumour control
probability (TCP) models. The application of the Zaider and Minerbo non-Poissonian
TCP model incorporating the effect of cellular repopulation is reviewed. In particular
the recent development of a cell cycle model within the original Zaider and Minerbo
TCP formalism is highlighted. Application of this TCP cell-cycle model in clinical
treatment plans is explored and analysed.
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1 Introduction and historical background

The purpose of this article is to review recent contributions in radiobiological model-
ling applied to external beam radiotherapy which concentrate on the role of cellular
repopulation between treatments and cell-cycle effects which influence the outcome of
treatment. Owing to the enormous body of theoretical and clinical publications devo-
ted to radiobiological modelling, no such review could be comprehensive. Thus we
will concentrate only on two of the most commonly used formalisms in radiotherapy.
These are the linear quadratic (LQ) and tumour control probability (TCP) models.

The plan of the article is as follows. Section 1.1 reviews the historical development
of clinical applications of radiobiological modelling using the LQ and TCP formulae.
Sections 1.2 and 1.3 focuses on the theoretical development of the LQ and TCP
models in cancer radiotherapy. Section 2 presents the radiobiological theory of the
LQ and TCP models. Section 3 addresses the issue of repopulation within the LQ
model and discusses recent developments within this particular formalism of the LQ
model. Section 4 examines the important role of the cell-cycle within the TCP model
and analyses how the recent models of Dawson and Hillen [21] enable the TCP to
be calculated for general time-dependent treatment protocols. In Sect. 5 we discuss
future directions yet to be explored within the context of LQ and TCP radiobiological
modelling and present some concluding remarks.

1.1 Clinical applications of radiobiological modelling in external beam radiotherapy

Major advances during the last 55 years have been made by radiobiologists in unders-
tanding the mechanisms of how radiation causes DNA damage. A notably robust
mathematical model that has been adopted widely in radiation oncology is the LQ
formalism [20,31,33,43,68,70,74,95,99]. This model predicts dose–time relation-
ships and has been a commonly used model for studying cell survival analysis. The
LQ model takes account of the two basic mechanisms of cell death or sterilization:
repairable lesion exchange and non-repairable lesion [14]. In addition, the LQ model
incorporates one of the fundamental aims of radiation treatment, that of separating the
responses of the tumour, early responding healthy tissue and late responding healthy
tissue.

The LQ model has the practical advantage that it results in a simple analytical
form for the survival fraction and can also be employed in the prediction of disease
free survival probability TCP models. As such, it is applicable clinically to a wide
range of external beam radiotherapy treatment schedules. Widely implemented cli-
nical treatment schedules in electron beam radiation oncology include (see Table 1
for details): (i) Standard fractionation, [37,42,78] (ii) Hyper-fractionation (smaller
dose per fraction, same total dose and overall treatment time), e.g. for oropharyngeal
cancer, [37,41,89], (iii) Accelerated fractionation (shorter overall treatment time with
the same total dose), e.g. for head and neck cancer [54,65] (iv) CHART (Continuous
Hyperfractionated Accelerated Radiotherapy) for head and neck cancer [5,72], glio-
blastomas [23] and non-small lung carcinoma [71,72]. Other alternative schedules
include: ARCON (Accelerated Hyperfractionated Radiation therapy with Carbogen
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Table 1 Typical
implementation of various
radiation treatment protocols

Roman numerals correspond to
those protocols listed in text
a Two-week period of rest in
middle

Dose/frac. No. of Days/week Times/day Total
(Gy) fractions (no. of weeks) (interval) dose

i 2 30–35 5 (6–7) 1 60–70

ii 1.15 70 5 (7) 2 (4–6 h) 80.5

iii 1.6 45 5 (5a) 3 72

iv 1.4–1.5 36 7 (1.7) 3 (6 h) 50–54

and Nicotinamide) employed in laryngeal cancer [12,37,78]; SMART boost (Simulta-
neous Modulated Accelerated Radiation Therapy) used with success in the treatment of
head and neck cancer, [12,37,78]; hypo-fractionation (a smaller number of larger-dose
fractions) applied in the treatment of prostate cancer [8,25,30]; split course (inten-
tional gaps in radiation therapy) [37,78] and six days per week treatment protocols
[64].

Mathematical and statistical modelling have played a crucial role in developing
many of the above treatment schedules. They can give vital insight into whether a
particular schedule maybe suitable or not to be used in a clinical setting. In the next
section we review the different variants of the LQ model that have been developed
with the aim of improving treatment outcome for cancer patients.

1.2 Theoretical developments of the LQ model in electron beam radiotherapy

The most commonly used model for studying the survival response to radiotherapy is
the LQ model [27,82]. This model considers the effect of both irreparable damage
and repairable damage susceptible to misrepair which ultimately leads to mitotic
cell death. The LQ model comes in various degrees of complexity depending on
the number of the well established “5R’s” of radiobiology that are incorporated into
the model (that is, the 4 “R’s” by Withers—Repair, Repopulation, Re-distribution and
Re-oxygenation [97] and more recently intrinistic radioresistance [79]). Studies which
extended the LQ model to account for exponential repopulation include Wheldon et al.
[96], Usher [88], Travis and Tucker [85] and Fowler [27]. The effects of hypoxia have
been addressed by Woulters and Brown [100] using a one-compartment model based
on the assumption that oxygen is purely dose dependent. Brenner et al. [9] have consi-
dered a one-compartment model of the LQ model to take into account the effects of
re-oxygenation and re-distribution assuming a Gaussian distribution for the radiosen-
sitivity parameters along with exponential repopulation. Two-compartment models
(hypoxic and oxic), where re-oxygenation is represented by the flux of cells between
the two compartments have been developed by Buffa et al. [11] and then extended by
Horas et al. [40].

Optimization of radiotherapy treatment within LQ modelling incorporating expo-
nential repopulation has been studied by Wheldon et al. [96] and Wein et al. [92]. More
recently, McAneney and O’Rourke integrated logistic and Gompertzian growth laws
into the LQ model [56]. The LQ model has also been incorporated into 4D simulation
models for tumour response to radiotherapy in vivo by Antipas et al. [1], Dionysiou
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et al. [24], Dionysiou and Stamatakos [23]. Another variant of the LQ model captures
the process of the mitotic cycle [16,22,36,104]. Other advances in fractionated radio-
therapy include the effect of the delay on tumour repopulation during treatment [2].
However, of the 5 R’s of radiotherapy that exist, it has emerged from clinical stu-
dies that repopulation is one of the most significant factors that can provide insight
into the lack of efficacy of radiation treatment. Indeed, Kirkpatrick and Marks [49]
stated that simple radiobiologic models that fail to incorporate the heterogeneity of
radiosensitivity and/or tumour cell repopulation will not adequately describe clinical
outcomes. In addition, the recent of Kim and Tannock [46] on repopulation of cancer
cells during chemotherapy or radiation treatment also provides evidence to indicate
that repopulation often has a dominant effect on treatment outcome. The kinetics of
repopulation offer insight into the underlying mechanisms of tumour cell death and
re-growth, and as such, these models may be clinically useful in predicting response
to therapy [29].

These LQ models may also be used to design optimum treatment protocols in which
the aim is to maximize tumour control for the minimum normal-tissue complications.
Optimum fractionation schedules depend critically on the proliferative nature of the
tumour cells. Three clinical examples that illustrate this are, (i) head and neck cancer
[5,72], (ii) non-small cell lung cancer [32,71,72] and (iii) prostate cancer [63].

In head and neck cancer and non-small cell lung cancer, the tumours proliferate so
fast that shorter schedules such as CHART are required. Clearly, modelling a schedule
for treatment based on the LQ model will be more accurate if repopulation effects are
included based on the biological proliferation rate of the tumour. In prostate cancer,
the tumours proliferate slowly which allows so much repair time between fractions
that larger doses are required. Again, it is clear that including the repopulation kinetics
here would enable clinicians to exploit optimization schedules to enhance treatment
outcome for prostate cancer. It has been shown by Dionysiou et al. [24] that in a
hyper-fractionation scheme for glioblatomas there is a marked decrease in repopula-
tion compared to the standard fractionation normally used. This agrees with clinical
studies which indicate that hyper-fractionation generally improves tumour control
rates for aggressively proliferating tumours [27]. The debate about the importance of
repopulation effects has led to other models with more specific growth laws being
proposed to describe tumour proliferation and re-growth. These include the work
of O’Donoghue [62], Wheldon et al. [93], Lindsay et al. [52], Mao et al. [55] and
McAneney and O’Rourke [56]. These models are reviewed in Sect. 3 were in parti-
cular we focus on examining the role that various non-linear growth laws have on the
outcome of cancer radiotherapy treatment schedules.

1.3 Theoretical development of TCP models within the LQ formalism

The LQ model has also been integrated with a time independent TCP by Munro and
Gilbert [58]. In their model they postulated that the distribution of clonogens after
radiation treatment is represented by a Poisson distribution and obtained a simple
statistical formula for disease free probability incorporating the survival fraction for-
mula from the basic LQ model of cell damage and cell recovery. This model has been
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widely analysed for application in clinical radiation treatment protocols [6,10,66].
Maciejewski et al. [54] have used this model to improve TCP outcome using acce-
lerated schedules in head and neck cancer to minimize tumour repopulation during
therapy. Horiot et al. [41] have used the TCP model aimed at improving outcome by
increasing the overall dose delivered in hyperfractionation protocols in oropharyngeal
cancer. But the limitations of this early model are widely acknowledged [45,87,102].
Indeed the binomial/Poisson formula always underestimates the TCP and this is one
of its main flaws. Another flaw of Poisson model is that it neglects tumour clonoge-
nic repopulation during therapy. Tucker and Taylor [86] obtained improvements upon
the conventional Poisson TCP model by adopting a numerically based geometric sto-
chastic approach to account for tumour cell repopulation. Kendal [45] has obtained
an analogous closed analytic form of the numerical models proposed by Tucker and
Taylor [86]. Later in 1999, Tucker improved the 1996 model to account for cell cycle
effects, rate of cell differentiation and the cell rate loss.

Clonogen repopulation in Poissonian TCP calculations within the LQ model has
also been accounted for by introducing a time-dependent term into the formalism [19,
27,61,84,94,98]. Other Poissonian TCP model which extend the early TCP models to
include radiobiological cellular responses (other than repopulation) have been consi-
dered in the literature. For example, a closed form expression for radiation control
probability of hetergeneous tumours has been obtained by Fenwick [26]. TCP models
have been developed by Nahum and Tait [59], Webb and Nahum [91], Brenner [10]
and Webb [90] which incorporate the effect of distributions in the dose to the tumour
and clonogenic cell density. Mohan et al. [57] have considered a TCP model for pre-
diction of the cost function to be optimized in 3D treatment planning. Buffa et al.
[11] have investigated the TCP model within a two compartment model for oxic and
hypoxic tumour cells using a LQ formulation and an oxygen diffusion model.

The models discussed so far are Poissonian. This issue has been rectified by
Zaider and Minerbo [103] who have developed a non-Poissonian dose-time dependent
exact TCP formula based on birth and death stochastic processes to include cellular
repopulation. This important contribution corrects one of the flaws of the original
time-independent TCP model based on the binomial/Poisson formula which results
in underestimating the TCP. Based on the Zaider and Minerbo TCP formula which
is valid for any temporal protocol of dose delivery Stavrev et al. [76] have derived a
TCP formula specifically for external fractionated radiotherapy and shown this was
applicable to the case of variable probability of cell kill per dose fraction. Dawson and
Hillen [21] have extended the Zaider and Minerbo [103] TCP formulation to include
the effects of the cell cycle. The TCP models of Zaider and Minerbo are reviewed in
Sect. 4.

Since the aim of radiotherapy is to maximize damage to the tumour but at the same
time minimize damage to normal healthy tissue then it should be noted that TCP models
are maximized subject to some upper limit on the allowed normal tissue complication
probability (NTCP). Traditionally both TCP models and their corresponding NTCP
model are used by clinicians to establish guidelines for radiotherapists to predict
dose and best clinical practice for future patients. We do not intend to discuss NTCP
models in depth in this review due to the scope of the article but refer the reader to
well established and clinically accepted NTCP models in the literature [50,60].
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2 Basics and radiobiological background of LQ modelling

The LQ model was originally developed from biophysical considerations rather than
empirical clinical observations and as such it is closely associated with parameters
more likely to influence biological response. The mechanistic basis for the LQ model
has been extensively reviewed in the literature by Sachs et al. [69], Brenner et al.
[7] and Guerrero et al. [35]. Derivation of the LQ model is not unique and has been
obtained by many authors from different viewpoints [4,15,17,18,38,44,51,83]. The
expression for the LQ model may be simply stated as

ln σ = −αD − βG D2. (1)

This expresses the surviving fraction of clonogenic cells σ in terms of two parameters,
α and β. The parameter α represents lethal lesions made by one track action and β

accounts for lethal lesions made by two-track action. D is the radiation doses and G
is the Lea-Catcheside dose-protraction factor and is given by [44,51,70]

G = 2

T∫

0

R(t)
D

dt

t∫

0

R(t ′)
D

eλ(t ′−t)dt ′, (2)

where D = D(T ) is the total dose in the interval, R(t) the time varying dose rate
and λ the repair time constant. This dose rate function, G, encompasses the temporal
behaviour of radiation delivery in its entirety. Hence, Eq. 2 can be used to estimate
the protraction effects in the following cases: (i) single fractionation delivered at a
constant rate, (ii) split dose and multi-fraction irradiation protocols and (iii) continuous
low dose rates encountered in brachytherapy. The protraction factor G biophysically
represents that a potentially lethal lesion (i.e. a double strand break) is created at
time t ′ and if not repaired, may interact in a pairwise manner with a second lethal
lesion produced at time t [68]. In the case of a constant dose rate, as one has in the
situation for external beam radiotherapy, the dose rate R(t) is defined by the following
function,

R(t) =






D
T

t ∈ [0, T ] T > 0

0 else
(3)

from which we can then calculate G using Eq. 2. Thus we obtain

G = 2
T 2

T∫

0

t∫

0

eλ(t ′−t)dt ′ dt (4)

= 2
(λT )2 (λT + e−λT − 1). (5)
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T is the irradiation duration time. If the irradiation time is short enough, the term λT
in the above equation tends to zero. The exponential term can be expanded using a
Taylor’s series and by neglecting terms of order (λT )3 in the Taylor series approxima-
tion it is found that G → 1. However, if irradiation treatment is prolonged, such as in
the case of continuous low radiation schedules that are typically used in brachytherapy,
then G < 1, since the kernel exp[(t ′ − t)] ≤ 1 for t ′ ≤ t [70].

For the remainder of this article we are only concerned with normal external beam
radiotherapy where the duration of delivering a fraction is measured in seconds and
the repair time constant is typically an hour. In this case G(t) is effectively equal
to unity as shown above and the dose referred to as an ‘acute’ dose. In the case of
fractionated schedules where the dose is given daily and there is no interaction between
the schedules, then it follows that after n fractions each of dose d, the final survival
fraction arising from each of the individual fractions is

σ = e−αnd−βnd2 = e−(α+βd)D, (6)

where the total dose D = nd. This formalism presumes complete cellular repair
between treatments and can be extended to incorporate cellular repopulation using
the logistic or Gompertz laws. This will be discussed in Sect. 3 and compared with
existing repopulation models using a time-dependent factor.

2.1 Fractionation sensitivities: α/β ratios

In the LQ model the ratio (α/β) is an inverse measure of a tissue’s sensitivity to
fractionation, that is, the size of dose given on each treatment. For example, a typical
value for α/β range between 3 − 10 Gy [20,81,95]. In fact, in the case of prostate
cancer which is a very slowly proliferating, late responding tissue α/β can be as low
as 1 Gy [13,47]. At the other end of the spectrum α/β may be as high as 20 Gy
in the case of advanced head and neck cancer which is an early responding tissue
with an extremely aggressive rate of cell proliferation [78,81]. Recent advances in
treatment protocols have resulted from taking account of the particular radiobiological
cell survival parameters (α/β) involved. The cell survival curves shown in Fig. 1
are plotted for values of α/β = 1.5, 10 and 20 for prostate cancer, non-small cell
lung cancer and advanced head and neck cancer respectively. This range in values
corresponds respectively from late responding tissue, which has a high repair capacity,
to acute responding tissue which has a low repair capacity. Acute responding tissues
have fast cellular turn over and therefore show signs of radiation induced damage to
normal tissue days to weeks after exposure. This can be explained due to the short
lifespan of their mature cells. By comparison late responding tissues show effects
months to years later because they have a low level of cellular turnover and the interval
between cell divisions is long giving the cells an opportunity to repair radiobiological
damage [37]. Fraction size is a dominant feature in determining late effects with overall
treatment time having little influence. In contrast, the response by acute responding
tissue is influenced by (i) fractionation, but to a lesser degree, and (ii) the overall
treatment time [37].
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806 S. F. C. O’Rourke et al.

Fig. 1 Cell survival curves illustrating the surviving fraction of cells after a single dose of radiation. The
cases shown are for prostate cancer (α/β = 1.5 Gy), non-small cell cancer (α/β = 10 Gy) and advanced
head and neck cancer (α/β = 20 Gy)

2.2 Biological effective dose

One of the main clinical applications of the LQ model is to calculate the total dose on
a treatment regimen which would have the same effect on a given tissue as some other
regimen. This concept is known as the biologically effective dose (BED) and was first
introduced by Barendsen [3]. It was originally known as the extrapolated response
dose (ERD) and later re-named to the present day terminology (BED) by Fowler [27].
In this section we only consider an application of the BED for well-spaced high dose
fractions in Eq. 6 where the protraction factor G is unity. The BED formula employed
for clinical applications in external beam fractionated radiotherapy is given by

BED = − ln(σ )

α
= D

(
1 + d

α/β

)
, (7)

where n is the number of fractions, d is the dose per fraction and D is the total dose
delivered over the course of treatment. The term in brackets in the equation above is
the relative effectiveness so that BED is total dose × relative effectiveness. The BED
model represents the dose required for a given effect when delivered by infinitely small
doses per fraction. To achieve isoeffectiveness between two fractionation schedules of
total doses D1 = nd1 and D2 = nd2 where d1 and d2 represent the doses per fraction
respectively we obtain

D1

(
1 + d1

α/β

)
= D2

(
1 + d2

α/β

)
(8)
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Table 2 Schedules for advanced head and neck cancer

Total dose D Fraction dose d n BED Gy3 Gy20

Accelerated schedule [63] 66.0 2.0 33 110 79.2

Accelerated schedule [63] 59.4 1.8 33 95 70.1

Accelerated schedule [101] 54.0 1.8 30 86 58.9

Standard conventional schedule 60.0 2.0 30 100 72

and α/β ratios can be estimated if the parameters n, d1 and d2 are known. For any
normal or tumour tissue, an increased BED indicates an increased biological effect.
That is, a reduced surviving fraction, σ , for both normal and tumour cells. The goal
of radiotherapy is to minimize damage to normal tissue and maximize damage to
tumour tissue. In mathematical terms this means that for healthy tissue surrounding
the tumour the aim is to maximize σ in the case of normal tissue while simultaneously
minimizing the value σ for the tumour tissue. As larger values of β imply an increased
likelihood of potentially repairable ionizing events, it follows that tissues with smaller
α/β ratios exhibit a greater dose-sparing effect than do those with larger values of
α/β. That is, tissues with smaller α/β ratios have a larger surviving fraction σ after
treatment than tissues with a larger α/β ratio. Another factor to bear in mind is that
acute responding tissues respond to radiotherapy by accelerated repopulation, which
contributes to tissue sparing during fractionated radiotherapy. Thus, it is the late tissue
response that is the dose limiting factor.

A clinical example which illustrates the BED concept is shown in Table 2 for
advanced head and neck cancer. Three clinical accelerated fractionation schemes are
outlined from O’Sullivan et al. [63] and Wratten et al. [101] as well as the standard
treatment schedule. Within Table 2 we take α/β = 20 Gy for advanced head and neck
cancer and α/β = 3 Gy for normal tissue.

Note, it is not feasible to compare Gy3 with Gy20 values, since the log cell kill
obtained from Eq. 7 has been divided by α. However, it is possible to compare toxicity
to Gy3 values for normal tissue in different treatments and similarly evaluate the
effectiveness of tumour cell kill in the different treatment strategies for Gy20 values.
By comparing the overall dose of 60 Gy against the regimen for 54.9 Gy, it can be
seen that in the latter there is reduced toxicity to normal tissue.

One phase of the clinical trial by Wratten et al. had an overall dose of 54 Gy, but
again comparing this against the other schedules in Table 2, shows that the impact of
radiation treatment on the tumour is also greatly reduced. Accelerated radiotherapy
for head and neck cancer has been assessed in randomized studies and it has been
suggested that with this technique there is an increase in the severity of acute toxicity
compared with that of conventional radiotherapy, (last row Table 2). In particular,
O’Sullivan et al. noted that a schedule of total dose, D = 66 Gy, 2 Gy per fraction for
33 fractions, was too severe for patients to tolerate and suggested to reduce the dose
per fraction to 1.8 Gy. More generally, it may be seen from the following example
how knowledge of late-normal tissue and tumour α/β ratios is of major importance, in
so far as the BED is a measure of how to design radiation treatment protocols, which
might then lead to a better therapeutic ratio.
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Example Consider a treatment of head and neck cancer which delivers a total dose
D, and let d be the dose per fraction and n = D/d the number of fractions. In the
treatment schedule, a value of α/β = 3 Gy is assumed for the healthy head and neck
tissue and a value of α/β = 20 Gy is assumed for the head and neck tumour tissue
and both tissues are exposed to the same overall dose D. In both cases, the BED for
the healthy tissue and tumour tissue are respectively

BED3 = D
(

1 + d
3

)
, (9)

and BED20 = D
(

1 + d
20

)
, (10)

which are increasing functions of d. The smaller the dose per fraction, the better for
the healthy head and neck tissue. An optimum treatment requires maximizing BED20
and minimizing BED3 and so it is necessary to consider max(BED20 − BED3). That
is, to examine the behaviour of

BED20 − BED3 = D
(

d
20

− d
3

)
= − 17

60
Dd, (11)

which is decreasing in d. Thus, for smaller d the difference between the healthy head
and neck tissue and corresponding tumour tissue is increased which is the aim of a
successful treatment protocol. The BED formula considered here do not take account
of repopulation rates. This is considered in the next section.

3 Repopulation and the LQ model

In radiotherapy, treatment schedules are fractionated to allow the normal tissue to
repair and recover from the irradiation. During these periods of recovery and resting,
surviving clonogenic cells of the tumour also repair and repopulate. Saunders et al.
reported that tumour cell repopulation occurring during a course of conventional radio-
therapy may be the case of treatment failure [72]. Indeed, the nature of the re-growth
of the particular tumour concerned is expected to influence the outcome of a specific
treatment schedule [27,96,98]. Clinical radiation oncology treatment schedules also
indicate how the effects of repopulation may be exploited to achieve improved tumour
control [23,24,31,53,54,71,72].

Frequently, repopulation within the LQ model has been included in the very simple
form based on the assumption of a time-dependent exponential term factored into the
predicted clonogenic survival [27,85,96]. Such a model is in popular use and may be
written in the form,

ln σ = −n(αd + βd2) − λT, (12)

where T is the overall exposure time (i.e. the complete timescale of the treatment
protocol) and λ the exponential repopulation constant. An expression for λ can be
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obtained by relating it to the clonogenic doubling time Tp. This allows Eq. 12 to be
written as

ln σ = −n(αd + βd2) − T ln 2
Tp

. (13)

The model given by Eq. 13 was implemented by Wheldon et al. in 1977 to consider
optimal uniform treatment schedules for cancer radiotherapy [96]. This was achieved
by considering uniform treatment schedules and incorporation of radiation tolerance
through the cumulative radiation effect (CRE) system. The CRE was developed by
Kirk et al. [48] as a variation of the NSD (nominal standard dose) model. Equation 13
was also modified by Fowler to reflect the more realistic clinical setting in which there
is a time delay, Tk , before repopulation is detectable [27]. As such Eq. 13 becomes

ln σ = −n(αd + βd2) − (T − Tk) ln 2
Tp

. (14)

It is typically assumed that repopulation starts at the onset time Tk days and continues
until the end of the radiotherapy schedule at T days. Thus, the time available for cell
repopulation is T − Tk days. A constant doubling time of Tp after Tk days is assumed.
Other similar repopulation models were considered in 1988 and 1989 by Wheldon and
Amin [94] and Dale [19], and in 1995 Jones and Dale [42] studied the use of a time
varying loss factor. This was represented by a mathematical function which declined
exponentially either from the start of therapy or after some delay period.

These types of repopulation models, as given in Eq. 12–14, inherently assumes a
constant tumour sensitivity and rate of growth of the tumour, i.e. exponential growth
kinetics. However, it has been suggested by Ribba et al. [67] (and references therein)
that cell cycle regulation and anti-growth signals such as hypoxia (Gray et al. [34])
can play an important role in the reduction in response to radiation. That is, for those
cells within the S-phase of the cell cycle, or given low levels of oxygenation, a higher
level of radio-resistance occurs. During the course of treatment, re-distribution and
re-oxygenation occurs which increases the net repopulation rate of the tumour [28,
73,92]. Therefore the doubling time, Tp, is not constant, but dependent on the size of
the tumour and it has been shown that larger tumours have longer volume doubling
times than smaller ones [75,77]. One example of this may be found in some human
lung cancers which have been shown by Steel to follow a Gompertzian pattern of
growth [77,78]. Hence, the models presented so far may not be appropriate for all
tumours.

In 1997 O’Donoghue considered a Gomp-ex model within an LQ formalism which
assumed that a tumour follows a growth/re-growth curve which slows down as its size
increases. Mathematically this model consisted of two equations, one which described
the tumour to follow Gompertzian growth when the tumour was greater than a certain
critical threshold size and the other that describes the tumour by an exponential equa-
tion when the tumour was less than the threshold size. O’Donoghue applied this to
examine fractionated radiotherapy treatment [62]. Wheldon et al. have investigated the
dose–response relationship for cancer incidence in a two stage radiation carcinogenesis
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810 S. F. C. O’Rourke et al.

Table 3 Survival fraction at end
of accelerated treatment
schedule (n = 33, d = 2 Gy,
α/β = 10 Gy)

Tp Growth mechanism

Exponential Logistic Gompertz

30 1.059 × 10−10 1.151 × 10−10 3.517 × 10−9

60 7.129 × 10−11 7.432 × 10−11 4.688 × 10−10

90 6.248 × 10−11 6.424 × 10−11 2.263 × 10−10

model incorporating Gomp-ex cellular repopulation [93]. Lindsay et al. have applied
the Gomp-ex model to study radiation carcinogenesis for risk of treatment-related
second tumours following radiotherapy [52].

The authors of this article have also documented how the nature of repopulation
can influence the outcome for a particular treatment schedule [56]. Table 3 illustrates
our findings of the variation in outcome at the end of a treatment schedule resulting
from the particular nature of the mechanism of repopulation. Indeed, the conclusions
drawn were those that tumour following a repopulation mechanism of exponential or
logistic growth resulted in similar outcomes, whilst those that followed a Gompertzian
nature of repopulation resulted in a poorer prognosis for the patient. This was due to at
least one order of magnitude more tumour cells surviving the treatment protocol which
have then the potential to repopulate the tumour. Indeed, this effect is heightened by
gaps in the treatment protocol, whether these are planned or not. This leads to clinical
implications depending on the different re-growth laws that may be acting during the
course to radiation treatment and therefore should be considered during the clinical
planning of radiation treatment of cancer.

Although repopulation is a significant factor to be considered within the LQ model,
it still leaves redistribution and re-oxygenation to be dealt with. Brenner et al. consi-
dered this issue in 1995, and extended the LQ to that of the LQR model [9]. The LQR
model includes the 4 R’s of radiotherapy detailed by Withers [97], and deals with
redistribution and re-oxygenation through the concept of re-sensization, as detailed
by Hlatky et al. [39]. The allowance of intra-tumour heterogeneity is essentially hand-
led by considering a Gaussian distribution for α and β and obtaining the mean SF.
The LQR model is denoted by

ln σ = −αd −
(

β − 1
2
ς2

α

)
d2. (15)

The form of the LQ model is preserved by the averaging and so the first term still
denotes cell kill by one-track action, the second cell kill by two-track action (also
incorporates repair), but now a term referring to cellular diversity is included, given
by the dispersion about the mean radiosensitivity α. Horas et al. have incorporated the
LQR model into a 2-compartment system for a tumour representing oxic and hypoxic
zones [40]. These types of models are indeed the future direction of the LQ equation
and its development, i.e. the inclusion of heterogeneity and diversity of the cellular
structure of a tumour, as well as the nature of the type of repopulation.
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4 Tumour control probability models

In this section we outline the development of more and more detailed models for the
TCP. The Poissonian TCP model and the binomial TCP model are both based on the
LQ model. In fact, any of the modifications that include repopulation and heterogeneity
can also be used, e.g. Eq. 12–15.

Let n denote the number of tumour cells after treatment and n0 the initial number of
tumour cells. We assume that the cell number n is a random variable with distribution
P(n). Then the TCP is the probability to have no tumour cells left, hence

TCP = P(0).

We now assume that the surviving fraction σ is a good estimator for n/n0. If n is
Poisson distributed, then we get

TCP = e−n0σ (16)

and if n is binomial distributed we obtain

TCP = (1 − σ )n0 , (17)

where σ is given by one of Eq. 12–15. Note that these TCP formulas coincide for large
n0 and small σ (law of large numbers). Since these TCP formalisms are based on the
LQ model, they show the same advantages and shortcomings. A strong advantage is its
simplicity. The TCP and LQ models are based on the two parameters, α,β, which are
known for many tissues and cancer types. A disadvantage of these models is the fact
that the time course of the treatment and the repopulation dynamics are not included,
or are included artificially.

In a ground-breaking paper in 2000, Zaider and Minerbo developed a time dependent
TCP model based on a stochastic birth-death process. In the end, the Zaider-Minerbo
TCP formula (ZM) is based on the following differential equation model for the tumour
cell number

d
dt

N (t) = (b − d − h(t))N (t),

N (0) = n0,

(18)

where b is the birth rate, d the natural death rate and h(t) the radiation induced death
rate (hazard function). The treatment schedule is then explicitly included in the time
dependence of h(t). Based on Eq. 18 the TCP formula of ZM can be written as

TCP(t) =
(

1 − N (t)

n0 + bn0
∫ t

0
N (t)
N (τ )dτ

)n0

. (19)

Note that in the case of no repopulation, b = 0, we obtain the binomial TCP model
from above Eq. 17.
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The ZM-TCP formula explicitly uses exponential regrowth between treatments.
This is, as shown by McAneney and O’Rourke [56] a good model for small tumour
sizes. However, it would be interesting to study non-linear growth laws of the
form

d
dt

N (t) = f (N ) − d N − h(t)N ,

although it is very difficult to formulate and solve the corresponding non-linear birth-
death process. This might prevent the computation of an explicit TCP formula.

An extension of the ZM-model that includes cell cycle dynamics was developed
by Dawson and Hillen [21]. It is known that quiescent cells (in the G0-phase) are
less radiosensitive than proliferating cells (in the G1, S, G2, M-phases). Dawson and
Hillen split the tumour cell population into two compartments, active cells A(t) and
quiescent cells Q(t) (if needed, more compartments could be considered). For the cell
cycle dynamics we use a simple linear differential equation model that was proposed
by Swierniak [80]. Combined with treatment we have

d
dt

A(t) = −bA − d A + γ Q − ha(t)A,

d
dt

Q(t) = 2bA − γ Q − d Q − hq(t)Q,

A(0) = A0,

Q(0) = Q0,

(20)

where the new parameter γ > 0 describes the transition from resting compartment into
the cell cycle. Since quiescent cells are less radiosensitive, we assume ha(t) > hq(t).
Also for Eq. 20 the corresponding non-linear birth-death process can be formulated
and solved. This gives a quite complex TCP formula which we will not write down
here, but we refer to Dawson and Hillen [21] for details.

In evaluating this new TCP formula we made the following observations:

– The DH-model should be used if a significant quiescent compartment is present.
This is relevant for tumour spheroids with hypoxic interior.

– In general, the ZM-model overestimates the TCP, since it does not account for less
radiosensitive cells.

– If the TCP models are used to compare different treatment schedules (as summa-
rized in Table 1), then the ZM model and the DH model give very similar ranking.
In general, a higher dose per fraction schedule seems to increase the TCP.

– A ranking based on the BED gives different ranking of schedules. As an example,
the BED cannot distinguish between Schedule A: 2 Gy per day, 5 days per week,
7 weeks, and Schedule B: 2 Gy twice a day, 5 days per week, 3.5 weeks. Whereas
ZM and DH find that schedule B has a larger TCP which compares to the Schedule
C: 4 Gy per day, 5 days per week, 3.5 weeks.
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5 Conclusions

In this review we have examined the role of tumour repopulation kinetics in external
beam radiotherapy within the LQ formalism and its influence on treatment outcome.
An important feature of the tumour repopulation models considered here, are that they
allow the effects of temporally non-uniform treatments to be described. Our work
suggests that there may be untapped potential for the use of fractionation schemes that
incorporate repopulation kinetics more closely aligned with the observed re-growth
pattern of the particular tumour concerned. Our hope is that these types of models will
provide a systematic method of refining existing approaches to improve the therapeutic
index of cancer radiotherapy. Future work in this area will extend the repopulation
models considered here to include the effects of re-oxygenation and re-distribution
within the LQ formalism with a view to enhancing treatment outcome.

We have further considered the effects of the cell cycle within the context of the time-
dependent TCP formalism of Zaider and Minerbo which incorporates a repopulation
law based on a stochastic birth death process and shown that this can be used to
analyse a variety of treatment plans of varying dose rates, number of fractions and
overall treatment time. Inclusion of the cell-cycle is an important improvement on
existing current TCP models in the literature and show it may be possible to manipulate
the temporal structures of fractionation schedules to improve TCP outcome in cancer
radiotherapy. Future work on the cell-cycle TCP model will include information about
both hypoxia and re-oxygenation. In addition more complex patterns of repopulation
will be taken into account. It is expected that inclusion of these extra factors will yield
a more complete picture of tumour response to therapy.
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