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We study the dynamics of hybrid zones in the absence of selection. In dimensions 4 > I the width of the hybnid
zone grows as +/7 but in one dimension the width converges to a non-degenerate limit. We believe that tight
interfaces are common in one-dimensional particle systems.
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1. Introduction

In a number of situations one finds two regions in space which contain relatively homogeneous
populations, that differ considerably from each other, and are separated by a narrow zone in which
hybrids are found. A textbook example is the common house mouse in Denmark (see Hunt and
Selander 1973) which exists in the form Mus musculus in the North and in the form M. domesticus in
the South and along parts of the western coast. A second example is the Northern flicker in the
United States (Moore and Koenig 1986), which is red in the West and yellow in the East, with the
transition occurring sharply in the western half of South Dakota, Nebraska and Kansas.

There are literally dozens of such examples — see Harrison (1990) for a survey. These zones are of
particular interest since they reveal the interaction between divergent genotypes, and may have some
bearing on the mechanism of speciation. There are a number of possible explanations for hybrid
zones. They might be due simply to a recent mixing of two different types. There might be a sharp
ecotone {environmental gradient) so that different types are favoured on opposite sides. A third
possibility, called a ‘tension zone’, occurs when hybrids are less fit.

To be able to distinguish between the three possible causes one needs a model that predicts the
evolution of the hybrid zone in the three scenarios. Here we will formulate a model for the evolution
of a tension zone. To start with the simplest possible case, we will suppose that only a single locus is
involived, and consider a process in which the state at time ¢ is 1, Z¢ x {1,2} — {A,a}, where
(m(x, 1), (2, 2)) gives the state of the individual at x at time ¢. To formulate the dynamics we let
Paa- Paa = Paa and ¢, all € [0, 1], be the relative fitnesses of the three types of individuals. At rate
1, each individual is replaced by a new individual. To make a new individual at x, we first choose one
parent according to p(x, y}, pick one of its two genes at random, then cheoose a second parent
independently according to p(x, y}, and pick one of its two genes. Combining the two chosen genes
we get the type, say i, of the proposed new individual. We generate a random variable U that is
uniform on (0, 1) and accept this individual if ¢; < U. If the proposed new individual is rejected, we
pick new parents and repeat the process again using new choices that are independent of the oid ones.
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Peopie who have moral objections to our homosexual mating can enlarge each site to be a *deme’
consisting of M males and N females, rewrite the state as n,: Z¢ x {1,...,2(M + N)}, regard the
first 2M locations as being male genes, and pick one male and one female parent. Such a
generalization is importiant if one is investigating sex-linked characteristics, as in Silver’s study
(in preparation) of t haplotypes in mice. However, in this paper we will concentrate on the behaviour
of the asexual mode] with one individual per site and no selection (i.e. ¢; = 1), since this system is
closely related to a voter model on Z¢ x {1,2}. While this is not the case of most interest to
biologists, it is none the less useful to know the behaviour of the system under the nuil hypothesis of
no selection — for example, in order to reject this hypothesis and conclude that the effect of selection
is significant,

To prove results we need assumptions about the parental choice matrix p. The first and most basic
are the following:

() p is translation invariant, that is, p(x,¥) = g(y ~ x).
(ii) p is irreducible, that is, it is possible to get from 0 to any x € Z¢ in a finite number of steps.
(iii) ¢ has finite second moments, that is, 3", |x|*g(x) < .

For simplicity we will also assume

{iv) p is symmetric, that is, p(x, ) = p(y, x) or g(—z) = ¢(z).
The last assumption seems mnatural from a biological point of view and makes the drift
p=>_,.xg(x) = 0. To treat the general case one has only to subtract the drift and introduce the
symmetrized kernel

Blx,y) = p(x,y} +2p(x$ —y)

at the appropriate places.
To formulate our first result we will replace A by 1 and a by 0 to return to a more traditional
notation of particle systems, and we will consider an initial configuration in which

(0,0) ifx; >0
() = {(1, 1) ifx <0.

For x € Z% let 6, be the operator which shifts the configuration of the process so that the site x sits at
the origin. Let

Iy= foxjf.a?(x) 0':2 =Ty

be the covariance matrix of g and the variance of the ith component, which is positive by (ii), and let
®(x) be the standard normal distribution function. Finally, let ¥, be the limiting state for our model
starting from product measure with density p, that is, the genes in the initial configuration are
independent and are equal to 1 with probability p. Results of Holley and Liggett (1975) imply that v,
is a non-trivial stationary distribution in d > 3, while in d < 2, v, = pb) + (1 — p)éy where é; is the
point mass of the = i configuration.

With all this notation introduced we can state our first result simply as foliows:
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Theorem 1 Suppose x, € Z% and x,/+/f — x as t — oo. Then
0,1 = vg(—x1/01).

Presutti and Spohn (1983) have proved a closely related hydrodynamic limit which treats a general
sequence of initial conditions. However, except for a remark on p. 870, their investigation is
restricted to 4 > 3; and they suppose that the density of 1s in the imitial configuration is
asymptotically a continuous function of x.

In the biologically interesting cases 4 < 2, Theorem 1 does not tell us much about the structure of
the *hybrid zone’. Qur next result shows that, in 4 = 2, if we paint 1s white and 0s black then the
normal distribution predicts the shade of grey we see.

Theorem 2 In d =2, if /1 is a continuous function with compact support, then as 1 — oo

2
'2'1} > Z??:(x, iYh(x/V/t) — Jﬁ(y)q’(—yllal)dy in probability.

xeFti=1

The next result deals with the density of heterozygotes in the hybrid zone.
Theorem 3 Ind = 2, if x, € Z° and x,/+/T — x as 1 — o, then

Pln(en 1) # (0 2)) ~ 28(—x1/ay) (1 - B(~x,/o1)}

logt

Theorem 3 is easy to see since (i) there is a duality between the voter model and coalescing random
walks that says that the probability #,{x,, 1} # n(x,,2) is the probability that two random walks
starting at (x, 1) and (x, 2) do not hit by time f; (ii) results for random walks say that this prebability
is asymptotically equal to C/log ¢; and (iii} if we condition two two-dimensional random walks not
to hit by time ¢, when divided by /7 they converge to two independent normals. We can see (iil)
using ideas of Durrett (1978} by noting that two-dimensional Brownian motion does not hit 0, so
conditioning Brownian motion to avoid 0 has no effect.

While the last paragraph should make Theorem 3 plausible to mathematicians, Theorem 3 is
disturbing to geneticists since it contradicts the Hardy—Weinberg equilibrium, which predicts that
when the allele A has frequency p the genotypes AA, Aa and aa are always found in frequencies p?,
2p(1 — p) and (1 — p)?, respectively. There is no logical contradiction, since the Hardy—Weinberg
equilibrium is derived in a non-spatial model and it is easy to see from duality and the recurrence of
two-dimensional random walk that it cannot hold here. However, the failure of Hardy—Weinberg
equilibrium in our model is disturbing since it is widely observed to hold in nature.

To resolve this ‘paradox’ we have simulated the model with p(x, y) = 1/25 when sup;|x; — y;} < 2
in a 120 x 120 universe with cylindrical boundary conditions: the top and bottom of the square are
identified but not the left and right edges. Figure 1 shows the average of the states of five runs at time
250 starting with all AAs at points with x > 61 and all aas at points with x < 60, Here we have
plotted the average fraction of AAs and Aas in each column x = ¢. The graph of the fraction of
AAs approximates the normal distribution function as predicted by Theorem 2, Note, however, that
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Figure 1.

the graph of the fraction of Aas is much closer to what we would expect if each column was in
Hardy—Weinberg equilibrium than to the =0 limit predicted by Theorem 3. This resolves the
paradox since it indicates that over ‘short’ time-scales (here roughly 250 generations) there is littie
deviation from Hardy—Weinberg equilibrium, while the clustering predicted in Theorem 3 takes
place over tens or hundreds of thousands of years.

Last and most interesting is the case of one dimension. Since the proofs here are more involved,
we will consider the voter model on Z instead of on Z x {1,2}. Based on the proofs of Theorems 1-3
we expect that the result will stay the same, and simulations we have done confirm this, but the proof
will be much longer since we have to prove results for random walks on Z x {1,2} that are the
analogues of classical results for random walks on Z. We ask the reader to postpone judging our sin
until after reading all the details in Sections 3 and 4.

For the voter model on Z we define the leftmost-zero and the rightmost-one processes

£, = inf {x : 5,(x) = 0} r,=sup {x:n(x) =1}
and the interface process ¢, '

W) =mx+b-1), x>0
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The process ¢, takes values in the countable set

:—0 = {‘E : Z+ - {03 1}: 6(0) = l: E(l) = 0: ZE(-“) < OO}
x>0
For £ € Ey let r(£) = sup {x: £(x) = 1}. For the one-dimensional results we have to assume in
addition to (i)-(iv) that

@) T [2P4(2) < oo.

We need this to know that the ‘ladder variables’ of the random walk have finite second moments and
hence the limiting overshoot distribution has finite mean — see the proof of Lemma 3. Of course, if
one wants to remove (v), one should also ask if recurrence of the random walk (or more simply finite
mean) is enough for the next result.

Theorem 4 The interface process ¢, is an irreducible, positive recurrent Markov chain. So there isa
probability = on Z; such that

Py, =8 — 7€) ast— oo, £€EL,
Consequently,
Plri—4,=k)-a({t:rll)=k+1}) ast— oo

If x,/o+/t — r, it follows easily from the duality between the voter model and coalescing random
walks that P(n,(x,) = 1) — &(—r). Since Theorem 4 implies P(7,(x,} = 1) = P(r, = x,) it follows
almost immediately that we have:

Theorem 5 Assume o > 0. Then

P(r,/ot'? < x) - &(x) as ! - oo,

Of course, the last conclusion also holds for £,. Combining Theorems 4 and 5 with our belief that the
models on Z and Z x {1, 2} exhibit similar behaviour gives the following mental picture for hybrid
zones in d == 1: all hybrids are confined to an interval [¢,, r,} that has length O(1) and its midpoint at
= yo+/T when y has the standard normal distribution.

One way of proving Theorem 4 would be to show that E{r, — £,) stays bounded. We first believed
that this is false.

Guess 1 Let 7y =n({€:r(€) =k+1}). Then ) ;5 7, ~ C/k as k — o0.

Our intuition here was that there is a probability of the order of 1/4/7 that two random walks
starting at —/t and /7 will cross without hitting and end up on the opposite side of 0 at time 7. Of
course, what this implies is that P{r,~, > /) > C/+/1, and we need to let the first 1 — co to talk
about the limit distribution. '

To investigate this guess, we simulated the discrete-time voter model with p(x,y) =13 for
|x — ¥} £3. Running the process out to time 100000 and keeping track of the width of the
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interface at each time gave us an estimate of the distribution of the width in equilibrium,
7, = P(W = k). We then plotted InP(W > x} versus Inx to estimate the polynomial rate at
which P(X > x} went to 0 but this gave us a curve, so we plotted In P{W > x) versus x and got a
nice straight line (see Fig. 2). This led to

Guess 2 7, < Ce™ %,

After a lot of help we now know the following:
Theorem 6 If we exclude the nearest neighbour case in which the interface ¢, = ¢, for all t then
>k k#ty = oo, that is, the equilibfium interface distribution has infinite mean.

The idea for this proof comes from joint work of Carl Mueller and Roger Tribe, which Roger
described to Ted Cox at the Bernoulli Society World Congress at Chapel Hill, NC, 1994,
However, to investigate the details we needed the foliowing resuit which was proved by Greg
Lawler and Harry Kesten. Let S, = X, + ... + X, be a one-dimensional aperiodic random walk.
Let

a(x) = i PYS,, =0) — PY(S,, = x)
m=0

be the recurrent potential kernel. Let y = inf{n : §, < 0}.
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Theorem 7 IfEX; =0 and EX? = ¢? € (0, 00) then, for x > 0,
a(x) = x/o* + B*{(S, /o?) + a(S,)}
and hence if ELX;|> < oo then a(x) = x/o” + &+ o(1).

The second term and the constant o vanish for nearest neighbour random walk but are strictly
positive for other cases, and this is the key to the proof of Theorem 6. Readers who find this resuit
more interesting than the rest of the paper can go now to the beginning of Section 3 and read its
proof.

In the rest of this section we discuss interfaces in other models. We believe that the phenomenon
of tight interfaces is common in one-dimensional particle systems. Consider the contact process on
Z. In this model the state at time ¢ is ,: Z — {0, 1} with 0 standing for ‘vacant’ and 1 for *occupied’,
and the system evolves as follows:

{(a) Occupied sites become vacant at rate 1.
(b} If x is vacant, it becomes occupied at rate 83, p(x, ¥)7(¥)-

As above, p{x,y) = g{y — x), p is irreducible and symmetric, but this time we are willing to assume
in addition that g has finite range, that is, ¢(z) 72 0 for only finitely many z.

Let & be the contact process starting from £ (x) = 1 when x < 0, and 0 otherwise. Let & be the
contact process starting from &}(x) = 1 and suppose that the two processes are constructed on the
same space using the graphical representation of Harris (1978) and Griffeath (1979). Let

re=sup{x: & (x)=1}
¢ =inf{x:&(x) =0, £(x) = t}.

Since & (x) < £1(x), ¢ is the location of the leftmost discrepancy. We refrain from defining the
interface process i since it is no longer a countable-state Markov chain and make the following
rather weak conjecture:

Conjecture 1 If 5 > 3, then the sequence {r, — £,,7 > 0} is stochastically compact.

Here 3, is the critical value for survival of the contact process — see, for example, Liggett {1985,
Chapter V1) or Durrett (1988, Chapters 4 and 11). One should be able to prove this by combining
results of Bezuidenhout and Grimmett (1990) with a block argument (see Durrett 1993 for a number
of applications of this technique) but we have not been able to cope with the details.

A much more exciting interface problem to attack is the one-dimensional version of Ziff ef al’s
(1986) model of oxidation of carbon monoxide on a catalyst surface. In this process the state at
time ris 0, : Z — {0,1,2} where 0 stands for a vacant site, while 1 and 2, respectively, indicate a

carbon monoxide (CO) molecule or oxygen (O) atom attached to the surface. The system evolves as
follows:

{a) Carbon monoxide molecules land at vacant sites at rate p.
(b} An adjacent pair of vacant sites becomes occupied by two oxygen atoms at rate g/2.
(c) Adjacent CO and O atoms react at rate r € (0, o], producing two adjacent vacant sites.
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In the case r = oo, which is the original Ziff et al. model, the dynamics are defined by letting r — oo.
That is, each newly landed O atom or CO molecule checks its neighbours to see if a reaction can
occur. If so, a reaction occurs immediately and two vacant sites result. If a CO molecule lands
between two O atoms it reacts with one of them chosen at random.

Consider the Ziff er a/. model starting from ny{x) = I for x < 0 and ny(x) = 2 for x > 0, and let

¢ = inf{x : m(x) = 2}
rp=sup{x:p(x) =1}
u(x) =n(x+4£-1), x>0

Conjecture 2 The conclusions of Theorem 4 hold, and there are constants m = m(p) and o such
that

P(’;;E" < x) = ®(x).

The interest in this result is that it is an important first step in showing that coexistence is not
possible in 4 = 1, For example:

Conjecture 3 Consider the system with fixed g and r. The ‘edge speed’ m(p) is a strictly increasing
function of p and hence has m{ pp) = 0 for only one value of p. If we consider an initial state in which
there are infinitely many Is and 2s but no Is adjacent to 2s then

¢ { 5 whenp>py
! &, when p < p.

Ziff et al. (1986) used computer simulations to demonstrate thatind =2 whenr =ccandg=1-p
there are two critical values p; = 0.389 and p; = 0.525 50 that when p, < p < p; coexistence occurs,
that is, there is a2 non-trivial stationary distribution in which s and 2s are present at positive
density, while for p < p, or p > p, we have convergence to &, or 8, respectively. It is not hard to
prove that the last two conclusions hold for small p and p close to 1, respectively, but proving
coexistence for the original Ziff et al. model appears to be a difficult problem. Durrett and Swindle
(1993) and Bramson and Neuhauser (1992) have proved coexistence results for modified versions of
the Ziff et al. model.

To complete our survey of the literature, we should mention the simple exclusion process. In this
model particles on Z independently jump one unit to the right at rate p > 1/2 and one unit to the
right at rate 1 — p subject to the exclusion rule: jumps onto occupied sites are not allowed. This
process has a tight interface in the following sense. There is a measure u on the space of
configurations approaching asymptotically the product measure with densities p < A to the left
and the right of the origin respectively, and a random position X (¢) such that if we start from u at
time  then the systemn as seen from X(¢) remains distributed according to p for all ¢ > 0. This
description is from Ferrari et al. (1991). Their paper can be consulted for details and references to
earlier work on this problem. This picture has been developed further by Ferrari (1992) and Ferrari
and Ravishankar (1992).
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Finally, in view of Ttibe’s help with Theorem 6, we should mention Tribe (1993) and Mueller and
Sowers (1994) where related problems for the stochastic partial differential equations are studied.
The rest of this paper is devoted to the resuits that we do know how to prove. The first three
theorems are quite easy and are shown in Section 2. In Section 3 we prove the random walk results
(for example, Theorem 7) that are the keys to the proofs of Theorems 4-6 given in Section 4.
Finally, in the Appendix we prove a limit theorem for one-dimensional random walk conditioned to
avoid 0 that is needed in the proof of Lemma 3. We give the proof because (i) the result is stated
incorrectly in Belkin (1970); (ii) it is short; and (iii) we need to invert the characteristic function that
appears in the limit.

2. Proofs of Theorems 1-3

Qur first step is to introduce the duality between the voter model and coalescing random walks,
using a slightly non-standard notation that we find simpler in this case than the traditional ‘arrow-
delta’ approach - see Griffeath (1979) or Durrett (1988; 1993). Foreach x € Z% et {T5,nz 1} bea
Poisson process with rate ] and for i = 1,2 1et {Y*,n > 1} and {J5’,n > 1} be independent i.i.d.
sequences with P(Y ;" = y} = p(x,y) and P(J% =j) = 1/2 for j = 1, 2. At time T} we draw an
arrow from (x,1) to (¥ ! J*') and from (x,2) to (Y‘:'Z,J %2} to indicate where the new genetic
material comes from.

Even though there are infinitely many Poisson processes and hence no first arrival, it is easy to
adapt an argument of Harris (1972) to show that our recipe allows us to construct our process 7,.
For details, see Durrett (1993, Section 2). The reason for using this construction is that it allows us
to work backwards in time. For each (x,i) € Z¢ x {1,2} and 7> 0 we define a process
sit e 74 « {1,2}, 0 <5 <t, that ‘follows the arrows’. That is, if the tail of an arrow touches
SE"'“)" at time ¢ — 5, then S jumps to the head of the arrow. It is easy to see that § % js a
random walk, and that the state of (x,i) at time ¢ is the same as that of St at time ¢ — s.

We define the dual process by

gt = (S (x,1) € A}
for each 4 ¢ Z9 x {1,2}. From the definition of the S, it is clear that
P(m,(z) = 0 on 4) = P(my(z) = 0 on £ (2.1

This is the duality equation. The process &, is called a coalescing random walk since if § ) = § (704
we will have S = §1) for all r > s. Note also that the two processes ™ and S move
independently as long as their Z¢ coordinates are not equal.

Proof of Theorem 1

Suppose, first, that d > 3. Let F € Z¢ x {1,2} be a finite set and consider a coalescing random walk
§; starting with particles on (x,,0} + F. To estimate the behaviour of £, we introduce a comparison
process {; which behaves like & until time /7 and then allows the surviving particles to move like
independent random walks. It is easy to see that the probability that two particles in £ collide
between times +/7 and ¢ goes to 0 as 1 — co so the probability £, = ¢, converges to 1.
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To estimate the behaviour of £, we observe that the central limit theorem implies that when the
number of particles at time /7, |£ ;| = , the k particles are all within r'/* = (\/7)* of x, with high
probability. Now, from time \/?[to time ¢ the Z° components of the particles in &, move like
independent copies of a random walk R, that takes jumps distributed according to g at rate 1, so if
we let R{V denote the first component of R, it follows from the central limit theorem that

sup PR < ORy = x, + 3) ~ &(—x1/en)| — 0.

yily gl

The reader should note the little parentheses around the 1. In many cases below we will use plain
superscripts to denote different copies of a multidimensional process.

Let Y denote the voter model starting from product measure with density p. Combining the
results in the last two paragraphs with the duality equation, it follows that

P(,=0 on (x,,0) + F) = P(ng = 0 on £ )
~ P(ng' /7 = 0 on 50

- P(ng’(-iﬁ fo

= P(n% ") =0 on F),

'=0on 52‘/5)

where in the penultimate equation we have used translation invariance of n2=* in space and of the
dual in time. Letting # — oo now proves the result when d > 3. The proof for & < 2 is the same but
easier, since the number of particles remaining at time /7 will be [ with high probability. O

Proof of Theorem 2
If R, is as above, duality implies
P(n(x,i) = 1= P(R! <0),
so the central limit theorem tells us that if x,/+/f — y then
P(n(x,i) = 1) = ®(-p/oy).

Since the normal distribution function is continuous, the last conclusion implies that
P(n{y+/1,i) = 1) converges to ®(—y, /o) uniformly on compact sets. Letting

2
W= 33 s GV,

xeFri=1

it follows easily that if 4 1s a continuous function with compact suppeort then
EW — Jh(x)@(—x/al) dx.
To prove the result now it suffices to show that

EW? (jh(y)@(—y/al)dy)z, (22)
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for this implies that the variance of W tends to 0. Writing

2 2 2
BW = SN xR/ VOEm(x, D) (, 1)} (Jh(x)<1>(—x/al)dx)

=oaZ
(2) xeZ2i=1ye2t j=1

= ”h(x)h(y)@(—x/al)éc—y/al) dydx

we see that to prove (2.2) it suffices to show that if x,/+/t — x and y,/+/t — y with x # y in the
support of & then

Pin(x;, i) = Ln(y,i) =1) — O(—x,)/a)®(~y1/01)- {2.3)

To prove (2.3) we observe that well-known results about two-dimensional random walk imply that
with probability approaching 1, two random walks started at x, and y, will not hit by time z. []

Proof of Theorem 3

Let 4, = {8 ﬁo'”" # SED’Z)"} and Rfo'i)” be the Z° component of .S‘Eo’”". The desired result follows
from the folowing facts:

P(4,)~ C/logt as t — oo (2.4)
(R IV RO Vi4) = (2, 2%) (2.5)
where Z are independent bivariate normals with covariance matrix I equal to that of 4.

To prove these results it is convenient to forget about working backwards in time and to clean up
the superscripts. Let S%, i = 1,2, have the same distribution as the dual processes starting from
(0,1), and let R} and Q! be the Z2 and {1,2} components of the walks. Let T; be the time of the first
jump of the S%; let

T =inf{t> Ty: R! = R?}
r=inf{t>0:S! =82}

We first address ourselves to (2.4). For random walks on Z? it is ‘well known’' that
P(T >ty ~ C/logt. We have put ‘well known’ in quotation marks since it is not so easy to find
this result in the library. It can be proved using generating functions and Tauberian theorems as in
Kesten and Spitzer (1963, pp. 305-306), or one can find a more refined result about P(T = ») in
Theorem 4.1 of Jain and Pruitt (1970). However, we have found a very simple argument, which for
completeness we will give here.

We begin by considering a discrete-time walk W,. Let T =inf{m>0: W, =0}, q,=
P{T >n), p,=Fy(W,=0) and g, =3 1,0 Pm- By comsidering the last visit to 0 we have
1 =3 7-0 Pm@—m» and since the a, are monotone it follows that a, < g;'. To reverse the last
inequality, we note that the invariance principle implies that the probability of a visit to 0 between
times n and 2n goes to 0, so if € > 0 and » is large,

"
I—e s Z Pmlon—m < UnLn-

m=0
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Combining this with the previous result shows a,g, — 1. The local central limit theorem implies
Pn~ C/n, 50 g, ~ C/logn and the desired result follows.

To pass from discrete time to a continuous-time random walk that jumps at rate X is trivial since
well-known large deviations results for the Poisson distribution — see, for example, Durrett (1991,
Section 1.9) — imply that the probability of more than () + €)z or fewer than (A — €)¢ jumps by time ¢
is smaller than Ce™" for some 0 <, C < o0. To extend the conclusion to our random waiks on
Z% x {1,2}, note that after Ty, R} and Q' are independent, so even if we condition on the paths R!
and R? for t < T the probability that + = T is 1/2. Thus 7 corresponds to the sum of a mean 2
geometric number of returns with distribution T. If T, ..., T, are independent and have the same
distribution as T then

P(Ty+...+Tpy> 1) SmP(T > t/m)
P(Ty+...+ T, >1t) > P(T; > ¢ for some i)

>mP(T > 1) — (:)P(T )

Multiplying by 2™ and summing gives
2P(T > ) — CP(T > 1 < Plr> ) S2P(T > t/logt) + 3 m2 ™
m> logt
which proves (2.4) since the last term goes to 0 as ¢ for some € > 0.

We now turn to (2.5). Since this is more complicated we will give the details first for Z? and then
indicate the generalization to Z2 x {1,2}. Let ¥} and ¥? be independent randorn waiks that make
jumps according to ¢ at rate [, and let 7 =1inf{z: = V,z}. We will work with characteristic
functions. Let

() = Elexp {i(A+ V'D)}] = exp [-{1 - 6(A))}]
where ¢(A) = 3. exp (iA - x)¢{x). For future reference, note that

1-¢(A) ~ %Z My,  asA—0, (2.6)
)

where I';; = >, x;x;4(x) for 1 <4, j < 2. To investigate the joint distribution of (V! V3, wefix ),
i€ R?, and for convenience write W, =X V!4 u-VZ Since the two random walks are
independent

Blenp (i#,/v0) = 0, )8, (%) 27)
Fix1/2<a< <1, acloseto],let 0 < ¢ < min{8—a, I -5}, and note that
|E{exp (iW/v1);7 € (1% ¢]}| < P(T € (¢%,1]). (2.8)

To complete the proof now it suffices to show

Efexp (W,/vi);7 < ) = &, (%) o (L) pr < 1)+ o) (29)
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since combining (2.9) with (2.7) and (2.8) gives

‘E{exp (W,/V1);T > 1} — ¢, (i) ¢ (—-&)P(T > 1%)

7i 7 < P(r € (t%1]) + o{1™%).

Using (2.4), we now get

lin sup al-1,

=00

E{exp (iW,/v)lT > 1} - o', (%)Qb, (—-}) <

which together with the ordinary central limit theorem is enough to prove the result.
To prove (2.9) now we begin by observing that Kolomogorov’s L? maximal inequality (see
Durrett 1991, p. 216) implies

Pir<i®|Vi> P < P(sup]Vil > rﬁ"z) < o,
LR

Now, making an error of at most ™%, the left-hand side of (2.9) is

I e G R RS}

Tt is easy to see, since |x| < %% and 5 < ¢°, that

exp (i—(—}_}t“—)) =1+0(%)

and, recalling ¢,(A) = exp (—#{1 — ¢(A)}), that

oni( 7)o (52) = o(Z)o () + o

Combining the last four equations, the proof for Z* is complete.

To obtain the result on Z2 x {1,2}, we ]et 57 be modified versions of $, in which the genes pick
independent parents even when ) = §2. As before, we let R} and Qf, be the zz and {1,2}
components of our walks. Our first step is to prove that if we let W, = A- R!'+ - R? then

Efexp (iW,/V1)} = ¢(A/VD)o(p/V1) + o(r7°). (2.7)

Intuitively this is true because B! and &2 move independently except when R} = R_?, and the total
amount of time the equality holds is O(log 1) To argue this formally, we let V! = Rland ¥?bea
prooess that takes the same jumps as R’ when R # R} and takes mdependent jumps when
R2=R.

We can now proceed to estimate the difference as in Durrett and Neuhauser (1994) or Durrett and
Swindle (1994). To estimate the amount of time that R2 = R!, we note that A, = R = R, isa
modified random walk that takes jumps according to ¢ at rate 2 when A, # 0, and jumps according
to the convolution g= ¢ at rate 1 when A, =0. Let p = (g ¢)(0). Once we have A, =0, this
situation will persist for a geometric number of jumps with mean 1/p and then we will have A; # 0,
Once A; # 0 it follows from the random walk analogue of (2.4) that there is probability of C/log ¢
or greater of not having A, = 0 again before time ¢.
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From the last estimate it folows that the probability Z, = {s < 1: A; = 0} will consist of more
than 72 intervals is smaller than

(1-C/loge)’” < exp(~Ct*/logt).
It is easy to see that with probability greater than or equal to 1 — o(t™ ) none of the geometric ()
waiting times or of the exponential holding times will be larger than Clogt. Thus with high
probability the total amount of time |Z,] < Ct*(log 1)? € Cf. Using Kolmogorov’s inequality, it
follows that

P(sup |R2 -V > tf) < Cr /1% + o(£7°).

$EL
Using the last result and the fact that (2.7) holds for the Vi, (2.7) follows easily. It is now routine to
extend (2.9) to W,. Since (2.8) and (2.4) hold, we have extended the proof to Z° x {1,2}. |

3. Random walk estimates

In this section we will prove the random walk estimates that are needed for the proof of Theorem 4.
It may be wise to read Section 4 first to see how Lemmas 2—4 are used before plunging into these
details. Many of the resuits here are minor variations of classical random walk results that we were
not able to find in the literature. However, the first result seems to be of independent interest. Let
S,= X;+ ...+ X, be a one-dimensional aperiodic random walk. Let T, = inf {n: S, = y} and let

a(x) =3 P%S, =0)- P°(S, = x)
m=0
be the recurrent potential kernel. Let 7y = inf{n: S, < 0}.

Theorem 8 If EX, =0 and E}i’f=o'2 € {0, o0), then, for x > 0,
a(x) = x/* + E*{(S,,/0%) + a{S,)}, (3.1)
and hence if E|.X;|* < oo, then
a(x) = x/o* 4+ & + o(1). (3.2)

Remark

We have stated the result in discrete time since that is the classical setting for random walk. Since the
proof only uses the optional stopping theorem it should be clear that the result is also valid in
continuous time.

Proof

Equation (3.2} is a well-known consequence of (3.1). (See Theoremn 3 of Lai (1976) for a proof for the
more difficult non-lattice case.) To prove (3.1), we begin with the folowing technical result. 4 T is
the time S, first exits from (0, ¥ — 1)

E*(IS7); Sr < 0) < C.EXY, (3.3)
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where C, = 1/Py(T, < Ty). We prove this result as follows. Let V,{k) be the number of visits to &
before hitting 0 and observe that
N-1
PX(1S7| = 4,57 < 0) < D> E*V(k)P(1X,| 2 £+ k).
k=1
To bound the right-hand side note that 1 = E¥{¥,(k)} = PYT, < To)E*{¥,(k)} so E'Vy(k) < C,
and

2 =]
EX(|Sr; Sr <0) = ZP’(ISH =65 <0)
i

-
H

N-1
k=1

™2

Ly
]
—

mP(x; >m) < C.EX? < oo;

1A
gL
a

3
n

thus (3.3) is proved.
Observing that a(x) is a harmonic function for the random walk stopped at 0, and using the
optional stopping theorem at T we have

a(x) = E*{a(S7); St < 0} + E¥{a(Sr); Sr 2 N}. 3-4)

To see that this is justified, replace T by T A n, recall a(x) > 0, let n — oo, and use the monotone
convergence theorem and the easy fact that E, (a(8,); T > n) — 0.
Since S, is a martingale, using the optional stopping theorem at time T gives

x = E*(Sr; Sy < 0) + E*(Sr; Sy 2 N). {3.5)
To argue that this is valid, replace T by T An and let n — oc, using (3.3) and the dominated

convergence theorem for the first term, the monotone convergence theorem for the second and the
easy fact that E*(S,; T > n) — 0. Using (3.3} again, we now have

E*(Sr; Sr < 0) < (x+ C,EXD). (3.6)
Multiplying (3.5) by 1/0” and subtracting from (3.4) we have
a(x) — x/o* = E*{a(Sy) — Sy /% S7 < 0} + E*{a(S7) — Sp/o* Sy > N}. (3.7

By monotone convergence the first term converges to E*(a(S,,) — St,/ ¢?), so it suffices to show that
the second converges to 0. To do this we use the fact (Spitzer 1976, Section 29, p. 2) that
a(x)/x — %, 50

la(») —y/o’| <en, fory>N,
where ¢y — 0 as N — oo. Using this and (3.6) we have

E*{la(S7) — Sr/o”|; St > N} < exE*(Sr; Sr 2 N) S ex{x + C,EX}) — 0,
and the proof is complete. |



358 J.T. Cox and R. Durrett

Let X;(), X»(¢) denote independent continuous-time, rate-one random walks with jump matrix
p(x,y), and define

) = X0 + X5{1)
Yy(e) = Xo{1) — X1 (2).

Then Y (t) = (¥,{2), ¥2(#)) is a random walk on Z2, in which each Y;(¢) is a rate-two random walk
on Z with jump matrix p(x, y). Here we are using our symmetry assumption, but note that if p(x, y}
is general, Y,(1) is symmetric. Let

r=inf{t > 0: X)(¢) = Xy(¢}} =inf {r > 0: V(1) = 0}
=inf{t > 0: X)(f) < Xz2(8)} =inf {1 > 0: Y»(s) < 0}.

Using P*, here and in what follows, for the law of ¥, given ¥,(0) = x, we define the probability of
no return to 0 by time ¢ starting from x by

Ri=Pr>1 x#0
R =Y p(0,)P’(r > 1).
¥
The definition for x = 0 is chosen to be useful in a last time at 0 decomposition. In what follows,
readers (and authors) will have to remember that the case x = 0 is exceptional.

We will aiso be interested in the transition probability p,(x,y) and recurrent potential kernel a(x)
for Y,, defined by

px,y) = PY(¥a{t) = y)
= [ 00,0~ pt0, ) a1
We being with an estimate for the first quantity:

0 < p,(0,0) - p,(0,x) < Cx*/1*2, (3.8)

We can establish this result as follows. If ¢ is the characteristic function of p(0, x), then p,(0, x) has
characteristic function

2 B g — exp (2101 - ),

=0

so by the inversion formula

20, x) = 51;‘[:( exp (—ixA)yexp {—2:(1 — ¢{A)} dA

= 515 cos {xA) exp {—21(1 — #(1)} dx
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since ¢{A) is real and cos is even. Taking x = 0 and subtracting the last equation we have

£.(0,0) —p, (0, x) = % (1= cos (xX)) exp {~21(1 = (N} A S0

To find an upper bound for the right-hand side, we note that irreducibility implies ¢(A) # 1 when
A € [-n,n] — {0} and finite variance implies
1—d(A) ~A%®  ash—0

So there exists ey >0 such that 1— ¢()\) > ¢A2/2 for all A € [—x,n]. Combining the last
observation with the inequality 1 ~cosx < x?/2 (which can be proved by integrating sinx < x
for x > 0), we have

1" XN
Pi(0,0) =p(0,x) 5| —exp (—eozX?)dA

Changing variables A = u#/+/%, the last integral is
r e du = Cx2 /12

- 41:t3f'2

which gives result (3.8).
We turn now to the probabilities of no return:

RO~ o/v/at  ast— co. (3.9)

To get from the discrete-time result (Spitzer 1976, Section 32, p. 3) to formuia (3.9), we begin by
noting that if J; is the time of the first jump then RY is the probability of no return to 0 between times
Jo and Jy + t. Next, we observe that well-known large-deviations results for the Poisson distribution
(see, for example, Durrett 1991, Section 1.9) imply that the probability of more than (2 + €)¢ or less
than {2 — €)7 jumps by time J; + ¢ is smaller than Ce™ for some (0 < -, C < cc.

For x # 0, we have the following results as 1 — oco:

RY < Clx|v? (3.10a}
~ ga(x)/ VL. (3.10b)

To establish these results we proceed as follows. Since R} < 1, taking C > 1 takes care of x* > 1.
Assuming now that |x|* < ¢ and using a last time at 0 decomposition, we have

P <= [ pmORL & +p(x0)  forx£0 (3.11a)
1= [ 50,08 ds +(0,0). (3.11b)
Subtracting (3.11a) from (3.11b),

Ri = PX(r> 1) = J;(ps(o, 0) — py(x, 0))R%, ds + p,(0,0) — p,(x, 0).
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Using symmetry, (3.8) and (3.9) now, we have

[ C Cx?
B < [ (20,0~ px ) emts + o

< ” 0,0 0 ¢ ds
s |, 00 -p0.0) 7

[ (E)
2\ 532 | \Jt—5 1327
Changing variables s = r¢ in the second integral and then using the assumption x> < ¢ and (3.8), the

last expression is

Ca(x) Cx? Jl -3/2 -1/2 Clxj Clxl
< - -
<=7 + p l/zr (1-n"""ds+— \/_ < B

This proves (3.10a). To prove (3.10b) we now note that if € > 0, then

0<Ri— j:(p,(o,m ~ py(0,x)R%, ds

t
SJ (C;J/cz) —-C ds+£x—2.
a\s Vi—s 1372

When multiplied by /7 the two terms on the right go to 0. The desired result now follows from (3.9)
and the fact that e is arbitrary. J

Lemmal E*{Y3(s);7>1}=x"+0 [§RIds

Proof
Since E*{¥Y%(1)} = X + ¢4, it suffices to show that

!
EX{Yithr <t} =d*t— O’ZJ R} ds.
0
Decomposing according to the first mtting time of 0, we have

E{Y3(ir< 1) = L Pir e ds)EN Y= 5)} = o J; P(r € ds)(i —s)
=02J;duJ:P‘(Teds)=02I—02J;Rfds. O

Lemma2 E*(|Y;(0)), 7> 1) < Clx|.

Proof
The result is trivial for x = 0 since P%(r = 0) = 1. Jensen’s inequality implies

[EX{|Y3(t)||7 > £} < EX{¥3(0)|r >t} = E*{¥Y3(t);7 > t}/R%.
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Multiplying each side by (R7)?, taking square roots, then using Lemma 3.1, (3.10) and the trivial
inequality R} < 1, gives

E*{[Y3(8); 7 > 1} < [RFEX{Y}(1);7 > 1}]'2

- {ri(2 o[ ma)}”
< (x2 +% 'OJJ;—C%ds)UZ
= Vi+2cl, .

Lemma 3 (a) There is constant C < oo so that E*{¥;{s); r >t} < Cfor all x>0 and ¢ > 0.

(b) lim, _ o EX(Y 7 (1); 7> £) = (0?/2)(a(x) — x/5%).

Proof
Decomposing according to (7_, ¥,(7_)), we obtain using symmetry and Lemma 2

EXYs(thr >t} = ZJ;PX(T_ eds, Yo(s) =y, 7 > s)E?{Y; (¢t — 8);1r > t -5}
y<0

<3 [ P e a1 = el = BB < 1,
y<

but it is known (see Theorem 3 in Lai (1976, p. 65)) that under a third moment assumption
E*(1Y5(7_)|) is bounded in x > 0.
To prove (b), we note that Theorem B in the Appendix implies

{Ya(t)/oVilr > 1} = {3+ p(x)}F 5 + {3 = P(X)}F_ 3y
where p(x) = x/(20°a(x)) and a(x) =a(x) for x #0 and a(0) = 1. Using the definition of
conditional expectation, Lemma 1, and (3.10),
f
Erigirs g PR

tPX(r > 1) [RY

i
— 02-[05—'/2‘:15=20'2.

E{Y,(0/V1}Ir > 1] =

This shows that E*[{¥,(¢)/+/7}*|7 > t] is bounded in ¢ This fact, Theorem B, and the remark
before it that the Rayleigh distribution (here represented by the random variable ') has mean +/7/2
imply

E{Y3()/oVilr > 1} = {1 - p)}VE.
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From this and (3.10} it follows that (recall x > ()
E{Y3(1);7 > 1} = E{YI(t)/oVi|r > }oviR} — {3~ p(x)}/Ro - 0a(x) [ V/x.
Recalling now that p(x) = x/{207a(x)} gives the desired result. O
Let 0= {(a,p}):a=0>b},0" = {(a,b) :a<0< b}, and
Q={{c,d):d<0,d<c<—~d}.
In what follows, P*"* will denote the law of (X', X?) starting from X’(0) = x; or of (Y1, ¥?)

starting from ¥ °(0) = x;; the meaning should be clear from context. P* will continue to denote the
law of Y? starting from ¥ 2(0) = y.

Lemma 4
sz,z+x(X(I) e Q,‘T> t) — Ex{Yz_(f);T = f}

x

ZP"“"‘(X(:) e Q7> ) =E{Y;{);7> 1}

Proof
We will prove only the first equation. Since
Yi(8) = 500 + Xa(0)
Y2(8) = X2(2) — X (1),
we have P**YX(X (1) € Q,7 < 1) = PEYS*(Y (1) € @, 7 < 1). By the Markov property,
PEX(Y(1) € Q0,7 < 1) =ZJ; PE¥RE(0r e ds, Yy(s) = y)

¥

Y PP -5) =¢, Tt —s) = d).

d0d<ecs—d
Translation invariance implies
PEX (7 e ds, Yi(s) = p) = PY(r € ds, Y (s) = y — x — 22),
SO summing over z, , ¢ and then 4,

S PERHY() e QT <)

=;J;PUJ(TEdS)Z Z Pyto(yl(f—s).—.c,}’z(t_s):d)

d<0d<ce<~d
:I'Px(reds)z Z P (Y(t -5} = d)
° dBaics
=J;Px(red“)zld|l°°(yz(f—5)=d)=E"{Y;(;);JT‘_<_,}.
d<i

A similar calculation gives }_, P>***(X () € @) = E*{Y; (1)), and we are done. O
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4, Proofs of Theorems 4-6

Proof of Theorem 4

To prove Theorem 4, it suffices to show the follewing:
Proposition T The family {r, — £,, t > 0} is stochastically compact.
Proof
Let B, = 3., I{m{x) =0, n,(¥) = 1} be the number of ‘inversions’. We claim that
—1<r -4 < B, (a)
To see this, for r, — £, > ( we write

rp—£=1+ Z Hn(2) = 1} + H{ni(z) = 0}

<z

= 1{7?:(2’:) =0, ??:(r:) = 1}
+ Y UHnle) =0,9(2) = 1} + 1{m(z) = 0,n{r) = 1)}

£zt
S Btc

To estimate the number of inversions we will use duality. Recall from Section 2 the definition of
the random walks ST that trace the origin of the value at x at time ¢ and the dual process
£ = {§¥ :x € A}. Tohave a 0 at x and a | at y with x < y at time ¢ the two random walks S**
and SJ¥ must ‘cross’, that is, they must pass each other without hitting and end up with
ST 20> 8V Let

Dg(w,z,t) = {512(,1 m [wnz] = {w}z},s:v_‘r;{—x 20> Sfi;(x :
and let

AK(‘) = Z lbx(w,z,t}-

Wz

Dg(w,z,1) will be 1 if there are particles at w and z at time X in the dual coalescing random walk
with no particles in between, and if these particles cross and end up on opposite sides of 0 at time ¢ in
the dual. So Ag (1) counts the number of crossings that occur after time K. The two keys to the proof
are:

Lemma 5 sup,. g E{Ax(7)} - 0 as K — oc.

Lemma 6 E{B,;Ax(1) =0} < Co’K.

Once these are established the result follows since if we fix € > 0, then by Lemma 5 we can choose
K < oo such that P(Ak(t) > 0} < ¢ for all > K. Using Markov’s inequality and Lemma 6, it
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follows that for all > K,
Plri—€>M)<ec+ P(B,> M, Ax(t) =0)
< e+ E{B(1); 45 (1) = 0}/ M
<e+ CoK/M < 2e

for sufficiently large M.

Proof of Lenvma 5
Let

px(w,2) = PEE N w,2 = {w,z}),

and observe that

ex = px(0,%) =P €nk0)) >0  as K — oo

x=0

For t > K we compute using Fubini’s theorem and the Markov property:

E{AK(I)} = ZP(DK(w! Z, t))

Wl

=Y puxlw, )PV 20> S5
wz

-—.Z.u‘xoxz WJK>0>SW~|-XIX)
x=0

=" uk(0,)B (Y3 (t— K);72(0) > 1 - K} < Cey.
x>0

The last equality and the final in equality follow from Lemmas 4 and 3, respectively. O

Proof of Lemma 6
We now estimate the size of B, on the event {Ag(r) = 0}.

E{B; Ag(t) =0} =D P(ST 20> 8§ Ag(1) = 0)

X<y
<ZZP K—Z,SyK—W)P( ZIK>0>AW1K)
X< FwLZ
=Y vew, ) P(STEE 20> STEF),
wez

where vg(w,z) = 3, ., P(ik = 2, % = w} is an upper bound on the probability that two particles
that have crossed by time X reside at z and w at time X,
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In Section 3 we introduced independent random walks X (¢) and X>(r) with jump kernel p(x, y)
and Y5(#) = X,(f) — X {¢). Using that notation, we can estimate

ve(w,2) €3 P (X (K) = 2, X3(K) = w)

X<y

=Y PX(K) =z xX(K) =w-y) (4.2)

X<y
= PY,(t) <w—2z).
Consequently,

E{B; Ag(t) = 0} < > wg(w,2)P**(X,(1 — K) <0 < Xp{t — K),7 > t — K)

w2

=3 w0, )P (X (1 - K) < 0 S Xy(r — K), 7 > 1 — K)

w x>0

by translation invariance. Using Lemma 4, then Lemma 2 and (4.2), the last expression
E{B,Axg(t) =0} = EUK(O, NE Y3 (t-K);r>t—-K}

x»0

< CY xPUYy(K) < —x) < CEM{Y}(K)} = Co'K. |

x>0

Proof of Theorem 5
By duality and the central limit theorem, if x, = ro¢'/?, then
P(n,(x;) = 1) = P*(X,(2) < 0) = PYUX;(1) < —x;) = (1) = 1 = &(r).
Now 7,{x,) = 1 is only possible if r, > x,, so
P(r, = x,) 2 P(n,(x,) = 1).

To get a bound in the other direction, fix € > 0 and choose M such that P(r, — £, > M) < e for all
1> 0, and note that ,(x, — M = 0) and r, > x, is only possible if r, — £, > M, so

Plr, 2 x) < e+ P(n(x, — M) =1).
Since P(n,(x, — M) =1) — 1 — ®(r) and ¢ is arbitrary, the result follows. O

Proof of Theorem 6
The first step is to observe that, for x > 0,

S Un@ =0niz+x)=1}= 3 1n@=0nlz+x=1}

£y,

< Z Hr =& 2x}y=(r—-t)1{r-¢> x}.

Ex<r,
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Next, for Lemma 4 we know that

E(Z Hn(z) =0,m(z+x) = 1}) =ENY: (7> 1},

and the right-hand side converges to (0?/2){a(x) — x/¢?} as £ — cc. Theorem 8 and Lemma 3
imply that if the steps have finite third moment and we exclude the nearest neighbour case then we
have, for some § > 0,

inf lim E[(r, — £)1{r,~ € 2 x}] > 6. (4.3)

x»0l—ne

The problem now is to show that }°, . .k, is also bounded away from zero as x — oo, since this
will imply the claim by dominated convergence. To do this we will use the fact that the interface is a
positive recurrent chain, Let ¢y denote the trivial interface which corresponds to the initial state we
choose in the paper. If we start with the interface in the stationary distribution, then we have, for
every 1,

an‘k._z a()E (r,~ £)1{r; — £, 2 x}

kzx
> w(t)B°(r, — €)1{r. — £, = x}.

Letting ¢ — oo and using (4.3), we have that the left-hand side above is bounded below by @{iy)6,
and we are done. O
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Appendix

Here we prove the conditioned limit theorem needed in the proof of Lemma 3. Let Y (¢) be a rate-
two, continuous-time, one-dimensional random walk with

E’lexp {iAY(1)}] = exp [-2{1 — ¢(\)}] (A.1)
02,\2

d(N) =1-——+0(32) asx—0. (A.2)
Theorem A If 7 is the first return time to 0, then

& 10/nx
" 2a(x)

1
Jim E¥fexp {i0Y (/o V/i}jr > f] = ¢ i1- 92J LN

0v1l—vw
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where a@(x) = 1 for x =0, and a{x) = a(x)} for x # 0.

Proof
By the Markov property,

Elexp{iINY() 7 < 1] = J; P*(r € ds)E%[exp {i Y (1 — 5)}] ds

- L:p (r € ds) exp [<2(1 — s){1 — B(A)}] ds.
Now observe that
s _ l—exp[=2(t - 5){1 - ¢(N)}]
L exp [—2u{l — (M)} du= 20— S\ )

and hence

Efexp{iAY ()7 < 1] = J; P*(r € ds) (1 —2{1 - ¢(N)} j;_xe-i’-u{l—wn du)
= 1= RE =201 =90} [ Pre g [ e g
=1 Rf —2{1 - ¢(N)} L g~ 2Al-eM}() _ RY ydu

i
= ¢ 16N _ pX 4 201 — ¢(A)} L e 2SI Y i,

Noticing that E*[exp {iAY (¢)}] = e #U-¥™} and changing variables u = vf in the integral, we
have

Effexp {iAY(t)hi7 > 1] = e‘2f{ln¢{)«)}(ei)u _ 1

+ R} —2{1 ~ ¢(N)} J; exp [—2vt{1 — ¢(A)}| Ry, dw.

Setting X = §/0+/¢ and dividing by R¥, we have

Sfexp {i _ —2-egovin €Y 1
E [exp {IQY(I)/O'\/E}]T > t] =g T
T

+1-261~ qb(B/a\/f)}J; exp [—2vt{1 — $(0o/ V1 )}] "”’d

(A.3)

As t — 00, 2t{1 — ${6/5+/7)} — 6* uniformly on compact sets. Using (3.9) and (3.10), we see that
R} ~ ga(x)/+/nt and

ix/ o/t -1

a-2{1-0(6/ovi} & _¢* i0xfo

RF° calni/x
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We claim that the final integral in (A.3) converges to

1 2
_92 J e—v&
0

! dv
Vi-v
To prove this, consider separately the integrals over [0,1 — £~**) and |1 — 173/, 1). On the second
interval the integrand is bounded by C+/7 and so the integral is bounded above by Cz~'/* = 0. On
the first interval the integrands converge to the limiting integrand and are bounded by 2/+/'1 —wvfor
large 1, so the result follows from the dominated convergence theorem. O

Our next step is to invert the characteristic function in Theorem A. Let V be a random variable
with the Rayleigh density, that is,

PV =v) = ve~? /2 forv>0
0 otherwise,

and for future reference note that recalling the variance of the standard normal shows EV = +/2n/2.
If we let Fy denote the distribution function of X, then we have the following theorem:

Theorem B As-r — oo,
{Y@)/oVilr > 1} = {3+ PO sy + {3 - PO 3
where p(x) = x/{2%a(x)}.

Proaf
Integrating by parts and then consuiting Belkin (1970, p. 157) for the final equality, we have

. 00
lr lxle™ /26 dx = J xe™* /% cos (tx) dx
2) 0
= - cos (ex)[§° — Jm e tsin (ex)dx
0

=1- tJ e~ 12 sin (¢x) dx
D

1
. ‘EL ¥V exp {—13(1 ~ y)/2} dy.

To check this strange identity at home, let g;(z) denote the last two lines, let A;(¢) = {1 - g:(1)} /¢,
and note that Aj(f) = 1 — th,(¢), with 2;(0) = 0.
Changing variables y = 1 — v, = §+/2, we see that if U has distribution (Fy, + F_}/2, then
_wg?

i i
E(™V) = 1 —92J ® —dv.
0v1l—vw

Comparing with Theorem A, we see that when x = 0 the result holds with p(0) = 0. To get the result
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for x # 0, we observe that integrating by parts and recalling the characteristic function for the
normal show that the signed measure Fy — F. has characteristic function

o . o0 .
J xe—fﬁeux dx = —it 211:-[ (zn)—la’ze—xzﬂel“ dx = _ih/i;e_ﬁ_,'z-

-0 a0
With the change of variables ¢ = 6/2 and comparing with Theorem A, we get
p(x) = x/{2%a(x)}. =
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