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CONTACT PROCESSES ON RANDOM REGULAR GRAPHS

BY STEVEN LALLEY AND WEI SU

University of Chicago

We show that the contact process on a random d-regular graph initiated
by a single infected vertex obeys the “cutoff phenomenon” in its supercriti-
cal phase. In particular, we prove that, when the infection rate is larger than
the lower critical value of the contact process on the infinite d-regular tree,
there are positive constants C, p depending on the infection rate such that
for any ε > 0, when the number n of vertices is large then (a) at times
t < (C − ε) logn the fraction of infected vertices is vanishingly small, but
(b) at time (C + ε) logn the fraction of infected vertices is within ε of p, with
probability p.

1. Introduction. The contact process with infection rate λ > 0 on a con-
nected, locally finite graph G = (VG,EG) is a continuous-time Markov chain
(ξt )t≥0 with state space {subsets of VG} that evolves as follows:

(a) infected sites (i.e., vertices in ξt ) recover at rate 1, and upon recovery are
removed from ξt ;

(b) healthy sites (i.e., vertices not in ξt ) become infected at rate λ times the
number of currently infected neighbors, and upon infection are added to ξt ;

(c) the infection and recovery processes are independent, and independent from
vertex to vertex.

See [13] for a formal construction, or alternatively [9] for the standard graphical
representation using independent Poisson processes.

The behavior of the contact process on the infinite d-regular tree G = Td is
reasonably well understood. When d = 2 (where T2 = Z), there is a single survival
phase [13]. When d ≥ 3, there are two survival phases: in particular, there are
critical values 0 < λ1(Td) < λ2(Td) < ∞ such that if λ ≤ λ1, then the contact
process dies out almost surely; if λ1 < λ ≤ λ2, then the contact process survives
globally with positive probability but dies out locally almost surely; and if λ > λ2
then the contact process survives locally with positive probability. (See [19] for the
case d ≥ 4 and [12, 20] for d = 3.) The parameter range λ ∈ (λ1, λ2) is called the
weak survival phase, and λ > λ2 is the strong survival phase.

When G is finite there is no survival phase, since the absorbing state ∅ is ac-
cessible from every state ξ . Nevertheless, when the graph is large it will contain
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long linear chains, and so if the infection rate is above the critical value λ1(Z) the
contact process will, with nonnegligible probability, survive for a long time in a
quasi-stationary state before ultimately dying out. This suggests several problems
of natural interest:

1. How does the survival time scale with the size of the graph?
2. What is the nature of the quasi-stationary state?
3. How does the process behave in its initial “explosive” stage?

These questions have been studied for several important families of graphs, no-
tably the finite tori [17], finite regular trees of large depth [21] and versions of
the “small worlds” networks of Watts and Strogatz [8]. Stacey has shown that
when GL is a finite d-homogeneous rooted tree of depth L, the extinction time
of a contact process started from full occupancy in GL grows linearly in L when
λ < λ2(Td); but when λ > λ2(Td) it grows doubly exponentially in L, and almost
exponentially in the number of vertices. In a more recent paper [6], it has been
proved that the extinction time grows exponentially in the number of vertices.

In this paper, we consider a different class of graphs, the random d-regular
graphs. These are of interest for a number of reasons: they are expanders, they are
locally tree-like, and they are (unlike the finite trees) statistically homogeneous in
a certain sense. See [22] for a survey. The behavior of several common stochas-
tic models on random d-regular graphs has been studied. Lubetsky and Sly [14]
have shown that the simple random walk on a large random d-regular graph un-
dergoes cutoff, that is, the transition to stationarity occurs in a narrow time win-
dow. Bhamidi, Hofstad and Hooghiemstra [1] have shown that distance between
two randomly chosen vertices in first passage percolation on a random d-regular
graph is concentrated around C logn. Chatterjee and Durrett [5] have shown that
the threshold contact process on a random d-regular graph exhibits a phase transi-
tion in the infectivity parameter. More recently, Ding, Sly and Sun [7] have shown
that the independence number of a random d-regular graph is sharply concentrated
about its median.

Our main result is that the contact process on a random regular graph exhibits a
cutoff phenomenon analogous to that for the simple random walk. We shall assume
throughout that nd is even and d ≥ 3. Let G ∼ G(n, d) be a random graph uni-
formly distributed over the set of all d-regular graphs on the vertex set VG = [n].
Given G, for any subset A ⊂ [n], let ξA

t be a contact process run on G with ini-
tial state ξA

0 = A. (When A = {u} is a singleton, we will write ξu
t instead of ξ

{u}
t ,

and when the initial state is the entire vertex set VG we will omit the superscript
and write ξ̄t rather than ξ

VG
t .) Our primary interest is the behavior of the contact

process in the “meta-stable” phase, where the infection rate λ exceeds λ1(Td), and
our main focus will be the following question: for a typical pair of vertices, what
is the time needed for a contact process started from one vertex to infect the other?
Since the diameter of a typical random regular graph is on the order of logn, we



CONTACT PROCESSES ON RANDOM REGULAR GRAPHS 2063

expect the infection time to be on the same order. The main result of this paper,
Theorem 1.1, implies that this conjecture is true.

We say that a property holds asymptotically almost surely if the set of graphs
in G(n, d) satisfying this property has probability approaching 1 as n goes to in-
finity. The word “typical” will mean “asymptotically almost every as n → ∞”.
To denote conditional probabilities and expectations given the graph G, we will
use a subscript: PG and EG. The vertex degree d ≥ 3 will be fixed throughout the
discussion, and so we will use λ1 and λ2 as shorthand for λ1(Td) and λ2(Td). The
infection rate λ > λ1 will also be fixed throughout, and we will denote by pλ and
cλ the survival probability and exponential growth rate (see Section 2), respec-
tively, of the contact process on T. Also, we shall adopt the convention that all
o(1) terms tend to 0 uniformly in n (independent of G). Our first main result is the
following “cutoff” theorem.

THEOREM 1.1. Fix vertices u 	= v ∈ [n], and let G ∼ G(n, d) be a random
d-regular graph on the vertex set VG = [n]. For any 0 < ε < 1/32, there exist
constants gn(ε) → 0 as n → ∞ such that for asymptotically almost every G,

(1.1) PG

{
v ∈ ξu

s for some s ≤ (1 − ε)c−1
λ logn

} ≤ gn(ε)

and

(1.2) PG

{
v ∈ ξu

(1+ε)c−1
λ logn

} ≥ (
1 − gn(ε)

)
p2

λ.

This result implies that, on the event where ξu
t does not die out quickly, it will

not infect v much before time c−1
λ logn, but for any time (1 + ε)c−1

λ logn a bit
larger than c−1

λ logn, vertex v will be infected with conditional probability ≈ pλ.
Since this is true for each vertex v, this suggests that on the event where ξu

t does not
die out quickly, it will enter a quasi-stationary state at time ≈ c−1

λ logn in which
the fraction of infected vertices is approximately pλ. The next theorem states that
this is indeed the case.

THEOREM 1.2. If 0 < ε < 1/32, then for any δ > 0 there exist constants
fn(δ) → 0 as n → ∞ such that for asymptotically almost every G,

(1.3) PG

{
(1 − δ)npλ ≤ |ξ̄

(1+ε)c−1
λ logn

| ≤ (1 + δ)npλ

} ≥ 1 − fn(δ).

Moreover, for any sequence tn of times such that tn > (1 + ε)c−1
λ logn,

(1.4) PG

{
(1 − δ)npλ ≤ |ξ̄tn | ≤ (1 + δ)npλ | ξ̄tn 	= ∅

} ≥ 1 − fn(δ).

How long does the contact process remain in the quasi-stationary state? The
next result asserts that it does so for not longer than eβn, for some constant β > 0.
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THEOREM 1.3. There exists β > 0 such that for asymptotically almost every
G ∼ G(n, d), as n → ∞,

(1.5) PG

{
ξ̄exp(βn) 	= ∅

} = 1 − o(1).

Assertion (1.1) will be proved in Section 3, and assertion (1.2) in Section 4.
Theorem 1.3 will be proved in Section 5, and Theorem 1.2 in Section 6.

While preparing this paper, we learned that J.-C. Mourrat and D. Valesin [18]
have independently established Theorem 1.3. Because our proof is somewhat dif-
ferent from theirs, and because Theorem 1.3 is a key complement to Theorem 1.2,
we include it in this paper.

2. Preliminaries: Contact process on the infinite regular tree. For the re-
mainder of the paper, the degree d ≥ 3 will be fixed, so henceforth we shall denote
the infinite d-regular tree by T (or, when several different copies of T are involved
in a single construction, by T

1,T2, . . . ). Where convenient, we shall view T as a
rooted plane tree, so that every vertex other than the root has 1 adjacent “parent”
edge and d − 1 “offspring” edges, which are ordered left to right.

In this section, ξt = ξO
t will denote a contact process started from a single vertex

O (the root) on the infinite d-regular tree T. We shall assume throughout that all
contact processes on T are built using the graphical model of [9] (see also [11],
Section 2.2); we will refer to the system of Poisson processes that determine the
times of infection attempts and recoveries as the underlying percolation structure.

The d-regular tree is a non-amenable graph, in the sense that its Cheeger con-
stant is positive. This can be quantified as follows. For a finite subset S of vertices
of T, call v ∈ S a border point if among the d connected components obtained by
removing v from T, at least one of them contains no other vertices in S. Let B(S)

be the set of border points in S; then

∣∣B(S)
∣∣ ≥

(
1 − 1

d − 1

)
|S|.

See, for instance, Lemma 6.2 of [19] for a proof. We will denote by h(T) the
constant 1 − 1/(d − 1).

2.1. Contact process on T: Growth estimates. The nonamenability of T im-
plies that the supercritical contact process on T grows exponentially. Here is a
precise formulation, proved in [15] and [16].

PROPOSITION 2.1. There exist constants cλ > 0 and Cd > 0 such that

(2.1) exp (cλt) ≤ E|ξt | ≤ Cd exp (cλt).
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COROLLARY 2.2. There exists B1 = B1(λ, d) < ∞ such that

(2.2) exp(cλt) ≤ E

∣∣∣∣⋃
s≤t

ξs

∣∣∣∣ ≤ B1 exp(cλt) ∀t ≥ 0.

Consequently, for any ε > 0,

(2.3) P

{∣∣∣∣⋃
s≤t

ξs

∣∣∣∣ ≥ B1 exp
{
(cλ + ε)t

}} ≤ exp{−εt}.

PROOF. The lower bound exp(cλt) ≤ E|⋃s≤t ξs | follows directly from Propo-
sition 2.1. It is also immediate from Proposition 2.1 that for any T > 0 large
enough there exists CT < ∞ such that

E

∣∣∣∣∣
n⋃

k=1

ξkT

∣∣∣∣∣ ≤ Cd exp(cλnT )/
(
1 − exp(−cλT )

) = C′
T exp(cλnT ).

The difference between the sets
⋃n

k=1 ξkT and
⋃

t≤nT ξt is the set of vertices that
are infected by vertices in ξkT between times kT and KT + T ; these can all be
accounted for by running independent contact processes for time 1 starting from
vertices in ξkT for some k = 1,2, . . . ,N . Thus,

E

∣∣∣∣ ⋃
t≤nT

ξt

∣∣∣∣ ≤ E

∣∣∣∣∣
n⋃

k=1

ξkT

∣∣∣∣∣E
∣∣∣∣ ⋃
t≤T

ξt

∣∣∣∣.
That the expectation E|⋃t≤T ξt | is finite follows by routine arguments, using the
graphical construction of the contact process. Finally, (2.3) follows directly from
(2.2), by the Markov inequality. �

2.2. The severed contact process. We will make frequent use of an auxiliary
process, the severed contact process. We follow the terminology and notation of
[16] and [19]. Define a branch B to be the connected component of the root in
the subgraph obtained by removing a distinguished subset of d − 1 edges, each
having an endpoint at the root O . The severed contact process is the contact process
restricted to B, that is, infection is not allowed to travel across any of the d − 1
removed edges. We will use the letter η to denote the severed contact process; in
particular, ηS

t is the severed contact process with initial configuration S ⊂ B, and
ηt = ηO

t the severed contact process started with O infected at time 0. Clearly,
the severed contact process ηt is stochastically dominated by the contact process
ξt . In the standard graphical representation [9] contact process ξt and the severed
contact process are naturally coupled in such a way that ηS

t ⊂ ξS
t for any initial

configuration S and all t ≥ 0. Hence, the expected cardinality of infected sites in
the severed contact process is no larger than that of the original one. However, the
severed process has comparable cardinality in expectation.
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PROPOSITION 2.3. There exists a constant A1 = A1(λ, d) > 0 such that

(2.4) E|ηt | ≥ A1 exp (cλt) ∀t ≥ 0.

PROOF. This follows by an extension of the arguments of Morrow, Schinazi
and Zhang [16], who proved the weaker bound E|ηt | ≥ A1 exp (cλt)/t . Clearly, the
severed contact process ηt is dominated by the nonsevered contact process ξt , so
by Proposition 2.1,

E|ηs | ≤ E|ξs | ≤ Cd exp (cλs).

On the other hand, by inequality (5) of [16] and the lower bound in Proposition 2.1,∫ t

0
E|ηs |ds ≥ 1

λ

(
1

d
E|ξt | − 1

)
≥ a1 exp (cλt) ∀t ≥ 1

for a suitable constant a1 > 0. This implies that for any T > 0,

a1 exp (cλnT ) ≤
∫ nT

0
E|ηs |ds

≤
∫ (n−1)T

0
Cd exp (cλs) ds +

∫ nT

(n−1)T
E|ηs |ds

= C′
d(exp

(
cλ(n − 1)T

) +
∫ nT

(n−1)T
E|ηs |ds.

Hence, for T > 0 sufficiently large we have

(2.5)
∫ nT

(n−1)T
E|ηs |ds ≥ 1

2
a1 exp{cλnT }.

To complete the proof, we use the fact that for any t, s > 0,

(2.6) E|ηt+s | ≥ (
h(T)E|ηs | − 1

)
E|ηt |.

This holds because if we run the severed contact process up to time s, then discard
those infected vertices that are not border points of ηs , and then run severed contact
processes from each of the remaining (border) infected points for time t inside the
unoccupied branch at time s, the resulting infection set is dominated by the original
severed contact process at time t + s.1 The inequality (2.4) now follows routinely

1The −1 on the right side of inequality (2.6) is to account for the possibility that for one of the
border points of ηs , the adjacent empty branch might contain the root O . There cannot be more than
one such border point, because by definition the adjacent empty branch cannot contain any other
points of ηs .
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from (2.5) and (2.6), because (2.6) implies that

E|ηnT | ≥ C

∫ nT

nT −T
E|ηs |ds and

E|ηt | ≥ C′
E|ηnT −T | ∀t ∈ [nT − T ,nT ]. �

By following only those infection trails in the underlying percolation structure
that remain in a given branch of T, we obtain a severed contact process: thus,
given a contact process ξA

t such that x ∈ ξ0, there is a severed contact process
ηx

t with initial configuration ηx
0 = {x} that is dominated by ξA

t . Clearly, if x, x′
are distinct vertices and Bx,Bx′ are nonoverlapping branches of T rooted at x, x′
then the severed contact processes ηx

t , ηx′
t induced by the percolation structure are

independent. The independence of severed contact processes in nonoverlapping
branches of the tree allows the construction of Galton–Watson processes embedded
in a contact process on T. We next use such embedded Galton–Watson processes
to prove the following.

PROPOSITION 2.4. For any δ > 0,

(2.7) P
{|ηt | ≥ exp

{
(cλ − δ)t

} | ηt 	=∅
} → 1 as t → ∞.

PROOF. It suffices to prove this for times t = nT that are integer multiples of
a fixed T > 0, because for any fixed T > 0 the probability that an infected vertex
remains infected for at least T time units is e−T , so by the weak law of large
numbers, if there are exponentially many vertices infected at time nT then with
conditional probability → 1, at least a fraction e−2T will remain alive until time
(N + 1)T .

We will proceed by a comparison argument: in particular, we will show that
the contact process {ξnT }n≥0 at integer multiples of T dominates a Galton–Watson
process {Zn}n≥0 with mean offspring number greater than exp (cλ − δ/2)T and
finite variance. This will imply the desired result, because (i) on the event that the
Galton–Watson process survives,

lim inf
n→∞ Zn/ exp

{
n(cλ − δ/2)T

}
> 0,

by the Kesten–Stigum theorem for finite variance Galton–Watson processes, and
(ii) on the event that the severed contact process survives, at least one of its parti-
cles will engender a copy of the Galton–Watson process that survives.

Fix T > 0 so large that h(T)E|ηT | ≥ ecλT −δT /2; Proposition 2.3 ensures that
this inequality holds for all large T . Let {ηt }t≤T be the severed contact process,
run for time T . At the terminal time T , discard all vertices of ηT that are not
border points, and then run new severed contact processes for time T from each of
the remaining infected vertices in the adjacent empty branches of the tree. Because
these empty branches do not overlap, the resulting severed contact processes are
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independent, and up to automorphisms of T are copies of the original severed
contact process {ηt }t≤T . Let Z2 be the cardinality of the union of these severed
contact processes at time 2T . Now proceed inductively, at each time nT discarding
all vertices except border points and then running severed contact processes in the
empty branches. If all of these severed contact processes are constructed on the
same graphical structure as the original contact process ξt , then at any time nT the
contact process ξnT will dominate the union of the severed contact processes, and
so

|ξnT | ≥ Zn.

That {Zn}n≥0 is a Galton–Watson process follows by construction, since all of the
severed contact process segments are independent copies of {ηt }t≤T . To show that
EZ2

1 < ∞ it suffices to show that E|ξT |2 < ∞; this follows because the process
|ξt | is dominated by a Yule (binary fission) process of rate dλ. �

REMARK 2.5. It follows that for any δ > 0,

(2.8) P
{|ξt | ≥ exp

{
(cλ − δ)t

} | ξt 	= ∅
} → 1 as t → ∞,

because on the event that the contact process ξt survives, at least one of its particles
will engender a copy of the severed contact process that survives.

2.3. Pioneer points. Next, we introduce a concept that will figure prominently
in the arguments of Sections 4 and 5. For any vertex x ∈ ξt , say that x is a pioneer
point if x ∈ B(

⋃
s≤t ξs), in other words, there exists a branch of the tree connected

to x which has been completely uninfected up to time t . We call such a branch
a free branch. Clearly, a pioneer point is a border point of ξt . We will use ζt to
denote the collection of pioneer points at time t .

PROPOSITION 2.6. For any δ > 0,

P
{|ζt | ≥ exp

(
cλ(1 − δ)t

) | |ξt | > 0
} → 1 as t → ∞.

PROOF. In view of Proposition 2.4 and Corollary 2.2, we may assume that on
the event {|ξt | > 0}, both of the following events occur:

|ξt | ≥ exp
(
cλ(1 − δ)t

)
and∣∣∣∣⋃

s≤t

ξs

∣∣∣∣ ≤ exp
(
cλ(1 + δ)t

)
.

Given these, it is easy to deduce that there is a subset Gt ⊂ ξt of cardinality larger
than

1

2
exp

(
cλ(1 − δ)t

)
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such that adjacent to each vertex y ∈ Gt is a branch By not containing the root
which contains no more than exp(3cλδt) vertices in

⋃
s≤t ξs ; moreover, for distinct

vertices y, y′ ∈ Gt the branches By,By′ do not overlap. Hence, for each vertex
y0 ∈ Gt there exists a “downward” path y0y1 · · ·yL in By0 (i.e., a path such that
each vertex yi is a “child” of yi−1) of length L ≤ logd−1(exp(3cλδt)) ≤ 6δcλt such
that yL is adjacent to a branch with no vertices in

⋃
s≤t ξs .

Fix such a path y0y1 · · ·yL in By0 , where y0 is a vertex in Gt . Consider the
event Ay0 that in the time interval [t, t + 6δcλt] infection spreads along the path
y0y1 · · ·yL in such a way that at time t +6δcλt the vertex yL is a pioneer point. This
event has (conditional) probability at least q6δcλt , where q > 0 is the probability
that in a contact process initiated by a single infected vertex v infection spreads
from v to a fixed neighbor vertex w and to no other vertex in the time interval
[0,1]. For distinct vertices y, y′ ∈ Gt , the events Ay and Ay′ are independent,
since the branches By,By′ do not overlap, so the number of vertices y ∈ Gt for
which Ay occurs stochastically dominates the Binomial distribution

W ∼ Binomial
(

1

2
exp

(
cλ(1 − δ)t

)
, q6δcλt+1

)
,

and if δ is sufficiently small then with probability approaching 1 as t → ∞,

W >
1

2
exp

(
cλ(1 − δ)t

)
q6δcλt+1 > exp

(
cλ(1 − Dδ)t

)
,

for some D > 0. Therefore, conditional on the event |ξt | > 0, with probability
approaching 1,

|ζ(1+6δcλ)t | > exp
(
cλ(1 − Dδ)t

)
.

Since δ > 0 can be made arbitrarily small, the desired conclusion follows easily.
�

Similarly, for the severed contact process ηt , we define pioneer points to be
those vertices in ηt that are also border points of

⋃
s≤t ηs . Denote the set of such

pioneer points by ψt . By the same argument as in the proof of Proposition 2.6, we
obtain the following estimate.

PROPOSITION 2.7. For any δ > 0,

P
{|ψt | ≥ exp

(
cλ(1 − δ)t

) | |ηt | > 0
} → 1 as t → ∞.

3. Contact process on a random regular graph: Constructions. There are
two layers of randomness in our model: first, the randomness implicit in choosing
a random d-regular graph G, and second, that involved in the evolution of the
contact process on the chosen graph G. Although it is most natural to think of
these two layers of randomness sequentially—first, choose the graph, then run the
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contact process—other constructions, in which G is built in stages as the contact
process runs, will be needed for our arguments. In this section, we shall describe
several constructions, which will couple the contact process (or several contact
processes) on G with a “covering” contact process on an infinite d-regular tree T.
To force these constructions to produce random regular graphs, we will show that
the induced constructions of a random graph G on the vertex set [n] follow the
so-called configuration model.

3.1. The configuration model for random regular graphs. Assume henceforth
that dn is even. The configuration model, first introduced by Bollobás [2] (also see
[3] and [22]), works as follows. To each of the n vertices u, associate d distinct
half-edges (u, i), and perform a uniform perfect matching on these dn half-edges.
Using this matching, construct a (multi-)graph by placing an edge between ver-
tices u and v for every pair of half-edges (u, i) and (v, j) that are matched. The
resulting graph need not be connected, and it might have multiple edges and self-
loops; however, the probability that the configuration model produces a simple,
connected graph is bounded away from 0 as n → ∞ (cf. [22]). Moreover, given
that the resulting graph is simple (that is, has no self-loops or multiple edges), it is
uniformly distributed over G(n, d). Thus, whenever an event holds w.h.p. for the
(multi-)graph obtained from the configuration model, it also holds w.h.p. under the
uniform distribution on G(n, d).

An important feature of the configuration model is that the random matching of
half-edges can be done in stages, one edge at a time, using any rule for choosing
the first half-edge, as long as the second half-edge is chosen uniformly at random
from the remaining half-edges (see [22]). In the constructions to follow, we will
use the evolution of the contact process (or processes) to determine the schedule
of pairings for half-edges.

Because the configuration model might produce a graph that is not simple or
connected, we must make clear how a contact process on a d-regular multi-graph
evolves. Our convention will be that infection attempts from an infected vertex v

will always occur at rate λ; when such an attempt is made, one of the d edges
incident to v is chosen at random, and the vertex at the other end of this edge is
made the target of the infected attempt. Thus, if some vertex u is connected to v

by k ≥ 2 edges, the overall rate at which infection travels from v to u is kλ. If v

has k ≥ 1 self-loops, then the overall rate of infection out of v is (d − k)λ.

3.2. Grow and explore: The base construction. We begin by showing how to
build the contact process and the random graph G in tandem in such a way that
the contact process ξu

t has initial configuration ξu
0 = {u}. We will later refer to

this as the base construction. In this construction, edges will be added only at
those times t when the contact process attempts a new infection from a vertex
whose neighborhood structure has not yet been completely determined. Thus, at
any time t ≥ 0 there will be a (random) set Ut of unpaired half-edges; the set Ut
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will decrease with t . At time 0, only vertex u is infected, and no edges are yet
determined, so U0 is full, that is, it contains all nd half-edges.

The recovery and infection times of the contact process are determined by a
system of independent Poisson processes attached to the n vertices of the graph,
two to each vertex (one for recoveries, the other for outgoing infections). At any
time t when an infected vertex v attempts an infection, one of the d half-edges
incident to v is selected uniformly at random. If this half-edge is already matched
to a half-edge (w, j), then vertex w is infected, if it is currently healthy, or left
infected if already infected, and the set Ut remains unchanged. (If v = w, then v

remains infected.) If, on the other hand, one of the unmatched half-edges (v, i)

incident to v is selected then one of the other remaining unmatched half-edges
(w, j) is chosen at random from Ut \ {(v, i)} and matched with (v, i), and vertex
w is infected. After this, the half-edges (v, i) and (w, j) are removed from Ut .
As t → T ≤ ∞, the set Ut will decrease to a limiting set UT . UT = ∅ then all
half-edges will have been paired, and the resulting graph G will be connected. It
is possible, though, that UT 	= ∅. In this case, UT will contain an even number of
half-edges; these can then be randomly paired to complete the random graph G.
The resulting graph G need not be connected.

PROPOSITION 3.1. Conditional on the event that the resulting graph G is
simple, the pair (G, (ξt )0≤t≤T ) will have the same joint distribution as for the
contact process on a random regular graph.

PROOF. First of all, G is uniform over G(n, d), because whenever we pair two
unmatched half-edges, the second half-edge is always chosen uniformly at random
from the unmatched pool.

Secondly, the interoccurrence times between recoveries are i.i.d. exponentials,
as are the times between infection attempts. Moreover, in each infection attempt
the active vertex chooses one of its incident half-edges, uniformly at random, as
the direction of propagation, and so conditional on the final configuration of G the
target vertex will be chosen uniformly among the d neighbors of the active vertex.
Therefore, (ξt )0≤t≤T is a version of the contact process on G. �

The base construction assumes a singleton initial configuration and that the
graph is initially completely unexplored. It is clear that the construction can be
easily modified so as to work with an arbitrary initial state ξ0 ⊂ [n] and with part
of the graph G initially explored.

3.3. Covering contact processes. Next, we will describe several extensions of
the base construction that will produce, along with the random graph G and the
contact process ξt , a contact process ξ̃t (or several independent contact processes)
on the infinite tree T and a covering map from T to G that (partially) projects ξ̃t

to ξt .
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3.3.1. Cover tree version with singleton initial configuration. As in the base
construction, we shall only consider the initial condition, in which the contact pro-
cess is initiated by a single infected vertex u ∈ [n]. We will use a contact process
ξ̃t on the infinite cover tree T, initiated at the root, and auxiliary randomization to
assign labels v = φ(ṽ) ∈ [n] to the vertices ṽ of T. This assignment of labels to
vertices of T will result in a (random) labeling function

φ : T −→ [n]
(here we abuse notation and use T to denote the vertex set of the tree T) that will
determine the covering map from T to G and the edge structure of G. Auxiliary
randomization will also be used to partition the vertices in ξ̃t into two classes, so
that at any time t ,

ξ̃t = ξ̃t,BLUE ∪ ξ̃t,RED.

Only the BLUE vertices will figure into the evolution of ξt , which will be defined
by the rule

ξt = φ(ξ̃t,BLUE).

Where appropriate, we will denote vertices of T via a tilde, for example, x̃, and
use x to denote the corresponding vertex x ∈ [n], so that φ(x̃) = x.

Fix a vertex u ∈ [n]; the singleton {u} will be the initial configuration of the
(projected) contact process on G. Denote the root vertex of the infinite tree T by
ũ, and declare φ(ũ) = u. Let ξ̃t be a contact process on T with initial configuration
ξ̃0 = ũ. Assume that this is constructed in the usual way, using a system of inde-
pendent Poisson processes attached to the vertices ṽ of T to determine the times at
which recoveries and attempted infections occur, and independent Uniform-[0,1]
random variables for auxiliary randomization that are used to determine the edges
along which attempted infections are directed. Call this system of Poisson pro-
cesses and auxiliary uniform random variables the percolation structure underly-
ing the construction. Assume further that there are countably many Uniform-[0,1]
random variables, independent of the percolation structure, that can be used for
the random choices to be made in the construction of the labeling function φ and
the partitioning of the infected vertices ξ̃t into red and blue. At time t = 0, only
the label φ(ũ) = u is determined. The function φ will be augmented only at those
times when a blue vertex of ξ̃t attempts an infection, in such a way that at any such
attempt the vertex x̃ ∈ ξ̃t,BLUE attempting the infection is labeled.

The rules for the modification of the function φ and assignment of colors (blue
or red) to infected vertices are as follows. Suppose that at time t an infected
vertex x̃ ∈ ξ̃t,BLUE attempts an infection. At this time t , some of the neighbors
of x̃ might have been labeled, and others might not; because the infection at x̃

has resulted from a chain of infections by blue vertices, the parent of x̃ must
also be labeled. Denote by ỹ1, . . . , ỹ� the neighbors that have already been la-
beled, with φ(ỹi) = yi , and by z̃1, z̃2, . . . , z̃d−� the neighbors that have not yet
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been labeled. At time t , some of the neighbors of x in G will have been deter-
mined, including y1, y2, . . . , y�, but possibly also some others, which we denote
by y�+1, y�+2, . . . , y�+k , where � + k ≤ d . Because the infection attempt entails
choosing one of the d neighbors of x̃ at random to serve as the target of the at-
tempt, there are 3 possibilities:

(U1) With probability l/d , one of the vertices ỹ1, . . . , ỹ� is chosen. In this case,
φ is not augmented.

(U2) With probability k/d , one of the vertices z̃1, . . . , z̃d−�, say w̃, is chosen
randomly and one of the labels y�+1, . . . , y�+k is chosen uniformly at random to
serve as the label φ(w̃) for the vertex w̃.

(U3) With probability 1 − l/d − k/d , an unused half-edge (x, i) incident to x

is chosen randomly, and another unused half-edge (w, j) is then chosen randomly
from among all remaining unused half-edges and matched with (x, i). Then one
of the vertices z̃1, . . . , z̃d−�, say w̃, is randomly selected and labeled w [i.e., φ is
augmented so that φ(w̃) = w]. When this happens, we add an edge connecting x

and w to G and remove the two half-edges (x, i) and (w, j) from the set Ut of
unused half-edges.

To complete the construction, we must specify how the vertices of ξ̃t are to
be colored (red or blue). This is done as follows. First, whenever a vertex ṽ ∈ ξ̃t

recovers (i.e., ṽ is removed from ξ̃t ) it loses its color. Second, when a red vertex
attempts to infect a vertex ṽ, the target vertex ṽ is assigned the color red unless it
was already blue, in which case it remains blue. Third, when a blue vertex attempts
to infect a vertex ṽ, the target vertex ṽ is assigned the color blue unless ṽ is also
assigned a label v = φ(ṽ) that is already assigned to another blue vertex; in this
case ṽ is colored red. Thus, at any time t the mapping φ is one-to-one on ξ̃t,BLUE.
This ensures that in the projected contact process ξ = φ(ξ̃BLUE) the recovery and
infection rates are 1 and λd , respectively, at any infected vertex.

As in the base construction, the pool Ut of unused half-edges decreases with t .
If at time T ≤ ∞ the set UT is empty, then the graph G will be completely de-
termined; if on the other hand UT 	= ∅ then the remaining half-edges in UT can
be randomly paired to complete the specification of G. In either case, the labeling
function φ : T → G might not be completely determined by time T , but if so then
the edge structure of G (which is completed at time T ) will uniquely determine an
extension of φ to the entire tree T that makes φ : T → G a covering transformation.
By construction, when φ(ξ̃t,BLUE) attempts an infection, any of its d neighbors is
equally likely to be the target of the infection attempt, and when a new edge is
added to G it follows the configuration model. Therefore, the projection obeys the
same rules as in the base construction of grow and explore described above. This
proves the following.

PROPOSITION 3.2. The pair (G, (φ(ξ̃t,BLUE))0≤t≤T ) obtained by running the
cover tree version of grow and explore has the same law as in the base construction
of the grow and explore process.
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FIG. 1. This graph records the order that vertices on a 3-regular cover tree are first infected.
0 indicates the vertex is in the initial configuration.

The cover tree version of grow and explore that we have just described has two
constituent processes, the contact process ξ̃t on the cover tree and the labeling
process. We will refer to these as the growth process and the exploration process,
respectively.

To emphasize the initial configuration {u}, its corresponding contact process on
the cover tree is denoted as ξ̃ u

t . Later we will run several contact processes on
multiple vertices, and adding the superscript will help us distinguish them.

The following figures illustrate concrete examples of how the construction
works.

3.3.2. Variation: Sector-priority labeling and coloring. In the second-moment
argument to be carried out in Section 4 below, a more complicated labeling and
coloring scheme will be used, in which priority will be given to vertices x in one
or more of the severed contact processes contained in the contact process ξ̃t . Fix
a time T < ∞, and let ξ̃t = ξ̃ u

t be a contact process on T initiated by a single
infected vertex at the root ũ ∈ T. Recall that ζ̃T is the set of pioneer points of ξ̃

at time T . For each vertex i ∈ ζ̃T , there is a free branch of the tree adjacent to i,
that is, a branch that has not been invaded by the contact process up to time T .
Fix such a free branch Bi (there might be several) and let (η̃i

t )t≥T be the post-T
severed contact process in this branch (thus, η̃i

t consists of all vertices x ∈ ξ̃t that
are reached by infection trails in the percolation structure which lie entirely in the

FIG. 2. Given Figure 1, we try to project it onto the finite 3-regular graph. If the top vertex has
already been labelled a, we sequentially label vertices 1, 2, 3, 4 according to the law described
earlier. When we label vertex 3 we accidentally use label c again, so the finite graph immediately
becomes the one on the right. Recall that we only allow one infection per vertex, so whenever we
observe multiple infections at the same time on a vertex we will remove the whole infection trail
except the chronologically first one.
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FIG. 3. Given Figures 1 and 2, suppose the infection trail coming from vertex 3 to vertex 4 is not
removed (which is possible if when 3 is infected, the infection at 2 already dies), then when we label
vertex 4, according to our law it has chance 1/2 to be b and chance 1/2 to be drawn from Ut , the
unused pool. The left graph is on the cover tree and the right one is on the finite graph.

free branch Bi). Keep in mind that the free branch might contain vertices of ξ̃t that
are not in η̃i

t ; however, since the free branches attached to different pioneer points
i, i′ are disjoint, the severed contact processes η̃i and η̃i′ will never collide.

The labeling function ϕ : T → [n] is constructed in two stages, together with a
partition of ξ̃t into blue and red vertices. The labeling rules are the same as in Sec-
tion 3.3.1, and up to time T , the rules for coloring are also the same. Beginning at
time T , however, the rules for assigning colors are modified as follows. At time T ,
each blue vertex in the set of pioneer points ζ̃T is assigned priority 1; all other blue
vertices in ξ̃T are assigned priority 2, and all red vertices are assigned priority 3.
Uncolored vertices—that is, vertices not in ξ̃T —-are assigned priority 4. At any
time t ≥ T when a vertex x ∈ ξ̃t recovers, it loses its color and reverts to the lowest
priority 4. When a vertex x ∈ ξ̃t attempts an infection of a vertex ṽ ∈ ξ̃t with the
same or higher priority, the status of ṽ is left unchanged. When a vertex x ∈ ξ̃t

attempts an infection of a vertex ṽ ∈ ξ̃t with lower priority, ṽ is assigned the color
and priority of x unless x is blue and ṽ has been assigned a label v = φ(ṽ) that is
also assigned to another blue vertex z. There are then two possibilities: (i) if z has
priority 1 then ṽ is assigned the color red and priority 3; or (ii) if z has priority 2
(and, therefore, color blue) and the infecting vertex x has priority 1 then z becomes
red and is given priority 3, while ṽ becomes blue and is given priority 1.

These rules ensure that when blue particles in any of the severed contact pro-
cesses η̃i attempt infections, the target vertices will always become blue unless
their labels already belong to other blue vertices in one of the severed contact pro-
cesses η̃i′ . They also guarantee that at any time t the labeling function φ will be
one-to-one on ξ̃t . Finally, the labeling rules guarantee that the edge structure of the
graph G will follow the configuration model, and so the pair (G, (φ(ξ̃t,BLUE)) has
the same law as in the base construction of the grow and explore process.

3.3.3. Several independent contact processes. In Section 4, we will find it nec-
essary to run two independent contact processes simultaneously on the same ran-
dom graph G. Furthermore, we will want the labeling and coloring done in two
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stages, the first in which labels and colors are assigned synchronously, but in the
second sequentially, with sector priority rules as described in Section 3.3.2. In
both stages, the construction of the graph G will follow the configuration model,
and the contact processes on G will be (partial) projections of contact processes
on covering trees.

We will construct several contact processes ξ1
t , ξ2

t , . . . , ξ k
t on G with singleton

initial configurations ξ i
t = ui , where the vertices ui ∈ [n] are distinct, in such a

way that conditional on the realization of the random graph G the processes ξ i
t

are independent. Let ξ̃ i
t be independent contact processes on copies Ti of T, each

initiated at the root ũi of Ti . We will construct labeling functions φi : Ti → [n] for
each cover tree and partitions of the infected sets ξ̃ i

t into red and blue vertices, in
such a way that the projections

ξ i
t = φi

(
ξ̃ i
t,BLUE

)
are (conditionally on G) independent contact processes. Begin by setting φi(ũi) =
ui .

Stage 1: Synchronous updating. In the first stage of the construction, in which all
contact processes will run from time t = 0 until time t = T1, there is a single pool
of unused edges Ut which changes only at times when one of the ξ̃ i

t attempts an
infection. The initial pool U0 consists of all nd half-edges. The labeling functions
φi are initially set so that only the root vertex of T

i is labeled (with the vertex
label ui), and φi is updated only when the process ξ̃ i

t,BLUE attempts an infection.
At any such time, φi is updated by the same rule as in Section 3.3.1. [Note that if
the infection attempt originates at x̃ ∈ ξ̃ i

t , the set {yr}1≤r≤�+k of neighbors of x =
φi(x̃) that are already labeled might include vertices whose labels were assigned
by infection attempts in some of the other covering contact processes ξ̃ j .] Thus,
whenever the projected process ξ i

t attempts an infection, any of its d neighbors is
equally likely to be the target. If such an attempt calls for the use of new half-edges,
these are deleted from the pool Ut , as in Section 3.3.1. The rule for assigning colors
to vertices of ξ̃ i

t is the same as in Section 3.3.1:

(i) vertices lose their colors when they recover (i.e., leave ξ̃ i
t );

(ii) an infection attempt by a red vertex changes the color of the target vertex
to red unless the target vertex is blue, in which case it remains blue; and

(iii) an infection attempt by a blue vertex changes the color of the target vertex
to blue unless the target vertex is assigned a label already assigned to another blue
vertex, in which case the target becomes red.

Thus, each φi is bijective on ξ̃ i
t,BLUE, but blue vertices in different contact pro-

cesses ξ̃ i and ξ̃ j might project to the same vertex in G.
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Stage 2: Sequential updating with sector priority. In stage 2, labeling and col-
oring will be done sequentially, first for ξ̃1, then for ξ̃2, and so on. As in Sec-
tion 3.3.2, the labeling and coloring will be done using sector priority rules for
each of the processes ξ̃ i .

At the end of stage 1, the pool of unused half-edges UT1 will consist only of
those half-edges not drawn during stage 1, and the labeling functions φi will have
been at least partially specified. Beginning with ξ̃1, the infected vertices at time T1
are assigned priorities: blue vertices that are also pioneer points get priority 1, blue
vertices that are not pioneer points priority 2, red vertices priority 3 and uncolored
(i.e., uninfected) vertices priority 4. Then, during time interval (T1, T2,1], coloring
and labeling for vertices in ξ̃1 are carried out according to the rules set out in
Section 3.3.2. At the end of this period, the pool of unused half-edges will have
been reduced to a subset U2

T1
of UT1 , and thus more edges of the graph G will

be determined. Beginning with this set of constraints, coloring and labeling for
vertices in ξ̃2 in the time interval (T1, T2,2) is then carried out, once again using
sector-priority rules. At the end of this period the pool of unused half-edges will
have been reduced even further, to a subset U3

T1
of U2

T1
, and still more edges of

the graph G will be determined. This process continues, sequentially, for ξ̃3, then
ξ̃4, etc., until all of the covering processes have been colored and labeled (in time
intervals (T1, T2,j ] that may differ for different j ).

In this scheme, the contact processes ξ̃ i
t are followed only for finite times

t ≤ T2,i < ∞. Once the labeling and coloring in stages 1 and 2 are complete, the
labeling functions ϕi and the edge structure of the graph G will be at least partially
determined. To finish the construction of G, we then randomly pair the half-edges
remaining in the set Uk+1

T1
of half-edges not drawn during stages 1 and 2; this

completes the specification of the graph G. Once G is determined, the labeling
functions φi are extended to the full trees Ti in a manner consistent with the edge
structure of G.

As in the earlier constructions, in both the synchronous and the sequential
schemes the rules of labeling and assignment guarantee the following.

PROPOSITION 3.3. The random graph G so constructed follows the same law
as in the configuration model, and the processes ξ i

t evolve as (conditionally) inde-
pendent contact processes on G.

It should be clear that more complicated constructions can also be used, in
which synchronous and sequential updating are used alternately, or non-singleton
initial configurations for the contact processes ξ i are used.

3.4. Proof of assertion (1.1) of Theorem 1.1. Let ξu
t = φ(ξ̃t,BLUE) be the con-

tact process constructed from the cover tree version of the grow and explore pro-
cess described in Section 3.3.1. Let t1 = (1− ε) logn/cλ. To prove (1.1), it suffices
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to show that

(3.1) P
{∃s ≤ t1 such that v ∈ ξu

s

} → 0 as n → ∞,

because if P{∃s ≤ t1s.t.v ∈ ξu
s } ≤ βn where βn → 0 as n → ∞, then by Markov’s

inequality,

P
{
G : PG

(∃s ≤ t1 such that v ∈ ξu
s

) ≥ √
βn

} ≤ √
βn.

Now the event that v ∈ ξu
s for some s ≤ t1 coincides with the event that at least one

vertex in
⋃

s≤t1
ξu
s is assigned label v. Consequently, to bound the probability of

this event, it suffices to show that:

(1) as n → ∞, P{|⋃s≤t1
ξ̃ u
s | ≤ n1−ε/2} → 1; and

(2) given |⋃s≤t1
ξ̃ u
s | ≤ n1−ε/2, the conditional probability that label v is not

used in the labeling process before time t1 approaches 1.

Assertion (1) follows directly from Corollary 2.2. To prove assertion (2), ob-
serve that, because all labels other than u are equally likely to be used in the label-
ing process, and because these probabilities add up to at most n1−ε/2, the chance
that label v appears in

⋃
s≤t1

ξ̃ u
s is at most of order

n1−ε/2/(n − 1) → 0. �

4. A second moment argument.

4.1. Heuristics and strategy. In this section, we shall prove assertion (1.2) of
Theorem 1.1. This states that for any two vertices u, v ∈ [n] the conditional prob-
ability, given the graph G, that v ∈ ξu

t+ converges to p2
λ as n → ∞, where

t+ := (1 + ε)c−1
λ logn.

Following is a heuristic explanation. Recall that the contact process is self-dual:
in particular, the Poisson processes used in the standard graphical construction can
be reversed without change of distribution. Thus, the event that v ∈ ξu

t has the
same PG-probability as the event that u ∈ ξv

t , and these events have the same PG-
probability that two independent contact processes ξv

s and ξu
s started at u and v

will intersect at time t/2. This will only happen if both contact processes survive
for time t/2; and since the contact processes on G are stochastically dominated by
contact processes on covering trees T, the probability that both will survive for a
large time t (call this event quasi-survival) will be bounded by, and approximately
equal to, p2

λ. Hence, for large t , with high probability,

(4.1) PG

{
v ∈ ξu

t

} = PG

{
ξu
t/2 ∩ ξv

t/2 	= ∅
} ≤ p2

λ

(
1 + o(1)

)
.

This argument shows that p2
λ is the largest possible asymptotic value for the

probability in relation (1.2). To show that this value is actually attained, we will
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argue that conditional on the event of simultaneous quasi-survival for two inde-
pendent contact processes ξu

s and ξv
s , the random sets ξu

t+/2 and ξv
t+/2 will almost

certainly overlap. To see this, observe that on the event of quasi-survival, the car-
dinality of ξu

t+/2 will be at least n1/2+α for some α > 0 depending on ε, and that

ξv
t+/2 is approximately distributed as a random subset of [n] of cardinality n1/2+α .

Since two such independent random subsets will intersect with high probability,
this suggests that

PG

{
ξu
t+/2 ∩ ξv

t+/2 	=∅
} ≈ p2

λ.

Unfortunately, because the labeling processes used in constructing the two con-
tact processes ξv

s and ξu
s will interfere, the random sets ξu

t+/2 and ξv
t+/2 are not

independent. To circumvent this difficulty, we will use the two-stage construction
described in Section 3.3.3, in which synchronous labeling and coloring are done
up to an initial time t1, and then sequential coloring, with sector priority rules, is
adopted for the second stage. Set

t1 = (1 − ε) logn/2cλ,

t2 = (1 + 3ε) logn/2cλ and

�t = t2 − t1 = 2ε logn/cλ.

We will show, using the estimates of Section 2, that with probability near 1, the
labeling processes induced by the contact processes ξ̃ u and ξ̃ v up to time t1 do not
interfere. We will then follow the labeling processes induced by the descendant
(post-t1) contact processes of the pioneer points at time t1 in pairs. The number
of such pairs will be large (on the event of quasi-survival), but the contact process
engendered by any particular pioneer point will infect only a (relatively) small
number of vertices, so for any particular pair it will be unlikely that their induced
labeling processes interfere.

For notational ease, we will let the descendant processes evolve for times 1 and
�t + 1 (since time t1) rather than for equal times, and we will use as our target
time t+ + 2 instead of t+. Thus, our objective will be to show that

(4.2) P
{
ξu
t2+1 ∩ ξv

t1+1 	= ∅
} ≥ (

1 − o(1)
)
p2

λ.

STRATEGY OF THE PROOF. The event of interest in (4.2) involves the two pro-
cesses ξu

t and ξv
t , which, conditional on the realization of the graph G, are assumed

to evolve as independent contact processes on G. We shall assume throughout that
these processes are constructed using the two-stage grow-and-explore process de-
scribed in Section 3.3, with sequential updating and sector-priority rules, so that
ξu
t and ξv

t are partial projections of contact processes (ξ̃ u
t )t≤t2+1 and (ξ̃ v

t )t≤t1+1
on distinct covering trees Tu and T

v . Up to time t1, labeling will be synchronous;
then sequential updating will be used, first with the labels for Tu assigned using
ξ̃ u
t in the time interval t ∈ [t1, t2 + 1] and then with labels assigned on T

v using
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ξ̃ v
t in the time interval t ∈ [t1, t1 + 1]. We will refer to the time interval [0, t1] as

stage 1, and the two subsequent updating stages as stage 2a and stage 2b.
Fix 0 < δ � ε < 1/32. By the results of Section 2, conditional on the event that

both contact processes ξ̃ u
t and ξv

t survive for time t1 the sets of pioneer points,
ζ̃ u
t1

and ζ̃ v
t1

will, with high probability, each have cardinality at least n(1−ε)(1−δ)/2,

while
⋃

s≤t1
ξ̃ u
s and

⋃
s≤t1

ξ̃ v
s will have fewer than n(1−ε)(1+δ)/2 elements. Conse-

quently (cf. Proposition 4.1 below), with probability near 1, no vertex label v ∈ [n]
is sampled more than once in stage 1, and consequently no vertex in either

⋃
s≤t1

ξ̃ u
s

or
⋃

s≤t1
ξ̃ v
s is colored red. Henceforth, we shall refer to this as a favorable stage 1.

Our goal is to show that conditional on a favorable stage 1, if we run sequential
updating on ξ̃ u

s for another time �t + 1, and then on ξ̃ v
s for another time 1, then

with high probability, there will be at least one common label between them at the
end. To accomplish this, we will follow the labeling processes along the infection
trails descendant from the pioneer points i ∈ ζ̃ u

t1
and j ∈ ζ̃ v

t1
; and furthermore, we

shall only keep track of the labels assigned by the descendant severed contact
processes η̃i

s and η̃
j
s in free branches attached to these pioneer points. Since these

free branches are nonoverlapping, the descendant severed contact processes are
all (conditionally, given stage 1) independent. Observe, however, that the induced
labeling processes are not independent, because they use a common pool of unused
half-edges (see Section 3.3.3).

For each pair (i, j), let Iij be the indicator of the event that at the end of stage 2
there is a label used by both η̃i

�t+1 and η̃
j
1 (the event Iij will be modified slightly

below). We will use a second moment argument to show that
∑

i

∑
j Iij → ∞ with

high probability, which will imply that ξu
t2+1 ∩ξv

t1+1 	= ∅ with high probability. �

We now formulate this argument in detail. Fix 0 < δ � ε, and define F (the
event that there is a favorable stage 1) to be the intersection of the following 3
events:

F1 = {
min

(∣∣ζ̃ u
t1

∣∣, ∣∣ζ̃ v
t1

∣∣) ≥ n(1−ε)(1−δ)/2};
F2 =

{∣∣∣∣ ⋃
s≤t1

ξ̃ u
s

∣∣∣∣ +
∣∣∣∣ ⋃
s≤t1

ξ̃ v
s

∣∣∣∣ ≤ n(1−ε)(1+δ)/2
}
;

F3 = {no label is used more than once in stage 1}.
Clearly, on the event F , all vertices in ξ̃ u

t1
and ξ̃ v

t1
are colored BLUE.

PROPOSITION 4.1.

P(F ) ≥ (
1 − o(1)

)
p2

λ as n → ∞.

PROOF. For the two contact processes on the cover tree, with probability at
least p2

λ, both survive up to time t1. Thus, it follows from Corollary 2.2 and 2.6
that F1 and F2 hold simultaneously with probability at least (1 − o(1))p2

λ.



CONTACT PROCESSES ON RANDOM REGULAR GRAPHS 2081

To show that F3 occurs, it is enough to show that with conditional probability
approaching 1, given F1 ∩ F2, no label i ∈ [n] is drawn more than once in the
combined exploration processes induced by

⋃
s≤t1

ξ̃ u
s and

⋃
s≤t1

ξ̃ v
s . Recall that in

the construction of the labeling functions (Section 3.3.3), whenever a vertex of Tu

and T
v is assigned a label not forced by the existing neighborhood structure, two

half-edges are drawn from the pool Ut of unused half-edges and glued together.
Each label i ∈ [n] appears on at most d half-edges in Ut , and on the event F2, at
most 2n(1−ε)(1+δ)/2 draws are made in stage 1. Therefore, the probability that there
will be no repeated labels is at least

A∏
m=1

(
1 − (d − 2)m + d + 1

dn − 2m + 1

)
,

where A = 2n(1−ε)(1+δ)/2. It is a routine exercise in elementary analysis to show
that this product approaches 1 as n → ∞. �

In stage 2, unlike stage 1, some labels will, with high probability, be drawn
more than once, and so some of the vertices infected by the contact process ξ̃ u

t in
the time period t ∈ [t1, t2 + 1] will be colored red. This complicates the task of
proving (4.2), because only blue vertices in the covering contact processes ξ̃ u

t and
ξ̃ v
t project to vertices in ξu

t and ξv
t . It is for this reason that we must examine the

descendant severed contact processes η̃i
s (where the vertices i range over the set

of pioneer points ζ̃ u
t1

) individually. We will show that for any fixed i ∈ ζ̃ u
t1

, with
conditional probability → 1, the descendant severed contact process (η̃i

s)s≤�t+1
will have no vertices colored red. The key to this is the following estimate on the
total number of vertices infected in stages 1 and 2.

PROPOSITION 4.2. Denote by S the σ -algebra generated by the grow and
explore processes induced by the contact processes ξ̃ u and ξ̃ v in stage 1. Define
Gα to be the event that the total number of vertices infected by ξ̃ u

t at any time
t ≤ t2 + 1 is less than n((1+3ε)(1+δ)+α)/2. Then there exists B < ∞ such that

(4.3) P
(
Gc

α | S)
1F ≤ Bn−α/2 for all large n.

PROOF. This is a direct consequence of Corollary 2.2 and the Markov property
of the contact process. On F , the number of vertices infected by time t1 is no
larger than n(1−ε)(1+δ)/2. Each of the vertices infected at time t1 engenders its own
descendant contact process, to which the bound (2.2) applies. This, together with
the Markov inequality, gives (4.3). �

Henceforth, we will set G = Gε(1+δ).
By construction, on the event F all vertices infected during stage 1 are col-

ored blue, so there is a one-to-one correspondence between infections on the cover
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FIG. 4. i1, . . . , iA are all pioneer points of ξ̃ u
t1

; j1, . . . , jB are all pioneer points of ξ̃ v
t1

. We will run
independent severed contact processes inside these branches associated with the pioneer points.

trees and infections on the finite graph up to time t1. Thus, in particular, each pi-
oneer point i ∈ ζ u

t1
will correspond to an infected vertex in the projected contact

process ξu
t1

. Denote by η̃i the severed contact process in the free branch (if there
is more than one free branch, choose the “leftmost”) attached to i initiated by i

at time t . For notational convenience, we shall write the dependence on time as
(η̃i

s)s≥0 instead of (η̃i
s+t1

)s≥0; thus, for any s ≥ 0 the infected set η̃i
s consists of all

vertices in ξ̃ u
t1+s connected to i by infection trails of duration s that lie entirely in

the free branch of the tree connected to i. Similarly, for each pioneer point j ∈ ζ v
t1

let (η̃
j
s )s≥0 denote the corresponding severed contact process. See Figure 4 for a

graphical illustration. The processes η̃i
s will be followed up to time s = �t + 1.

When we refer to a pioneer point of η̃i
�t , we will mean a vertex z in η̃i

�t such that
for some branch Bz of the tree adjacent to z,

⋃
s≤�t η̃

i
s contains no vertices in Bz.

(Note, however, that Bz can contain vertices of
⋃

s≤t2
ξ̃ u
s .)

Next, we will define the “intersection event” Iij for i ∈ ζ̃ u
t1

and j ∈ ζ̃ v
t1

. (We will
use the same notation Iij for both the event and its indicator.) First, define Zij to
be the set of all vertices infected by either ξ̃ u before time t2 + 1 or ξ̃ v before time
t1 + 1 minus the set of vertices infected by η̃i before time �t + 1 or by η̃j in the
time interval [0,1]. We will say that Iij occurs if in stage 2 all of the following
events happen:
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FIG. 5. The event Iij . x0 is a pioneer point of η̃i
�t .

(I0) |⋃s≤�t+1 η̃i
s | ≤ n2(1+δ)ε;

(I1) vertices in
⋃

s≤�t η̃
i
s are assigned distinct labels;

(I2) no labels assigned to vertices in
⋃

0≤s≤�t η̃
i
s occur in the set of labels as-

signed to vertices in Zij ;

(I3) in the severed contact process (η̃
j
s )0≤s≤1, vertex j infects a neighboring

vertex y in its free branch before time 1, which remains infected until time 1, and
η̃j produces no other infections by time 1;

(I4) some pioneer point x0 of η̃i
�t infects the neighbor in its free branch (call

this neighbor x1) in the time interval [�t,�t + 1], and the infection at x1 stays
alive until �t + 1 without infecting other vertices; and

(I5) x1 is assigned the same label l∗ as y.

See Figure 5 for a graphical illustration. The conditions (I1), (I2), (I3) ensure that
the vertices of η̃i and η̃j will be assigned the color blue and, therefore, will project
to infected vertices in the contact processes ξu, ξv , respectively. Thus, if (I4) and
(I5) also occur, then the intersection ξu

t2+1 ∩ ξv
t1+1 will contain the vertex l∗.

Recall that S is the σ -algebra generated by the grow and explore processes
induced by the contact processes ξ̃ u and ξ̃ v in stage 1. (Note: S includes the in-
formation about the choices of free branches for the pioneer points in ξ̃ u

t1
and ξ̃ v

t1
;

since these pioneer points might each have several free branches, the choices will
in general involve auxiliary randomization.) We will prove that with probability
approaching 1 as n → ∞, there exists some pair (i, j) such that the intersection
event Iij occurs. To accomplish this, it will suffice to show that with probabil-
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ity → 1 as n → ∞,

(FM)
∑
i∈ζ̃ u

t1

∑
j∈ζ̃ v

t1

P{Iij ∩ G|S} → ∞ on F,

and

(SM)

∑
i∈ζ̃ u

t1

∑
j∈ζ̃ v

t1

∑
i′∈ζ̃ u

t1

∑
j ′∈ζ̃ v

t1

P{Iij ∩ Ii′j ′ ∩ G|S}

= (
1 + o(1)

)( ∑
i∈ζ̃ u

t1

∑
j∈ζ̃ v

t1

P{Iij ∩ G|S}
)2

on F.

The remainder of Section 4 is devoted to proving (FM) and (SM). Since we are
only interested in the behavior of the quantities in (FM) and (SM) on the event F ,
we will henceforth, when convenient, omit the qualifying phrase “on the event F .”

4.2. 1st moment calculation. Proof of (FM). Since P{Iij |S} is the same for all
pairs (i, j), it suffices to estimate a single term.

By Corollary 2.2, the (conditional) probability that the number of vertices in-
fected by the severed contact process η̃i

s in the time interval s ∈ [0,�t +1] exceeds
n2(1+δ)ε is less than Bn−2δ . Hence, the conditional probability, given S , that the
event (I0) in the definition of Iij occurs converges to 1 in probability as n → ∞.

Next, we show that, with conditional probability near 1 all vertices infected
by the severed contact process η̃i in the time interval [0,�t + 1] will be colored
blue, and no label assigned to one of these vertices will be used more than once
in stages 1 and 2. Recall that by Proposition 4.2, P(Gc) ≤ Bn−ε/2, where G is the
event that no more than n(1+4ε)(1+δ)/2 vertices will be infected by ξ̃ u before time
t2 + 1. Furthermore, on F the number of vertices infected by ξ̃ v before time t1 is
no larger than n(1−ε)(1+δ)/2. Consequently, on the event F ∩ G, at every step of
stage 2 the number of unused half-edges satisfies

|Ut | ≥ dn − n(1+4ε)(1+2δ)/2.

Consequently, by an argument like that used in the proof of Proposition 4.1, the
probability that G and (I0) both occur, that there will be no repeated labels drawn
in the labeling of

⋃
s≤�t+1 η̃i

s , and that these labels will not overlap with those
assigned to vertices in Zij is at least

(
1 − d−1n−1+(1+4ε)(1+2δ)/2)n2(1+δ)ε −→ 1.

This proves that, on the event F of a favorable stage 1, the conditional proba-
bility, given S , that the events (I0), (I1) and (I2) in the definition of Iij both occur
converges to 1 in probability as n → ∞. Now we consider the events (I3), (I4) and
(I5). The event (I3) involves only the graph structure at the vertex j and the neigh-
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boring vertex y in its free branch; clearly, this event has a positive (conditional)
probability qλ independent of n. Furthermore, the event (I3) is conditionally inde-
pendent of both the contact process ξ̃ u and the exploration (labeling) processes.
Now consider the severed contact process η̃i : there is a positive probability q∗

λ

that this survives (see [19]), and conditional on the event that it survives, there
is high probability that the cardinality of its set of pioneer points at time �t is
at least n2(1−δ)ε , by Proposition 2.7. Hence, there is high conditional probability
(given that η̃i survives) that the number of these pioneer points which satisfy the
requirement of (I4) is at least 1

2qλn
2(1−δ)ε . Finally, consider the event that for one

of these pioneer points x0 the infected nearest neighbor x1 is assigned the same
label l∗ as the vertex y in (I3): since for any x0 the label choices for x0 and y in-
volve sampling from the pool of unused half-edges, the chance that both x0 and y

choose half-edges attached to vertex label l∗ is at least (d − 1)/(dn). Because the
number of these pioneer points which satisfy the requirement of (I4) is (with high
probability) at least 1

2qλn
2(1−δ)ε , it follows that

P{Iij ∩ G | S} ≥ (
1 − o(1)

)1

2
q2
λn2(1−δ)ε (d − 1)

dn
≥ C1n

2((1−δ)ε)−1.

Therefore, on the event F ,∑
i∈ζ̃ u

t1

∑
j∈ζ̃ v

t1

P{Iij ∩ G|S} ≥ n(1−ε)(1−δ)/2n(1−ε)(1−δ)/2C1n
2(1−δ)ε−1

= C2n
ε−δ(1+ε) → ∞.

4.3. 2nd moment calculation. The second moment estimate (SM) is proved
by similar arguments, but is complicated by the fact that we must keep track of 3
or 4 severed contact processes rather than just 2. Expand the second moment as
follows: ∑

i∈ζ̃ u
t1

∑
j∈ζ̃ v

t1

∑
i′∈ζ̃ u

t1

∑
j ′∈ζ̃ v

t1

P{Iij ∩ Ii′j ′ ∩ G|S} = I + II + III + IV,

where

I = ∑
i∈ζ̃ u

t1

∑
j∈ζ̃ v

t1

P{Iij ∩ G|S},

II = ∑
i∈ζ̃ u

t1

∑
j 	=j ′∈ζ̃ v

t1

P{Iij ∩ Iij ′ ∩ G|S},

III = ∑
i 	=i′∈ζ̃ u

t1

∑
j∈ζ̃ v

t1

P{Iij ∩ Ii′j ∩ G|S},

IV = ∑
i 	=i′∈ζ̃ u

t1

∑
j 	=j ′∈ζ̃ v

t1

P{Iij ∩ Ii′j ′ ∩ G|S}.
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Now (SM) becomes

I + II + III + IV = (
1 + o(1)

)
I 2 as n → ∞.

We have already shown that on the event F we have I → ∞ as n → ∞, so

I = o
(
I 2)

.

Therefore, to complete the proof, we must establish the following assertions:

II = o
(
I 2)

,(4.4)

III = o
(
I 2)

and(4.5)

IV = (
1 + o(1)

)
I 2.(4.6)

4.3.1. Proof of (4.4). Let y be the neighbor of j in j ’s free branch, and y′
the neighbor of j ′ in j ′’s free branch. In order that Iij ∩ Iij ′ occur, there must be
pioneer points x0, x

′
0 ∈ η̃i

�t (possibly the same), with neighboring vertices x, x′ in
their free branches, such that y and x are assigned the same label l and y′ and
x′ are assigned the same label l′. On the event that (I1)–(I2) hold for both Zij

and Zij ′ , the labels l, l′ will not have been used by any other vertex other than
x, x′, y or y′. Moreover, on the event F ∩ G, the total number of vertices infected
by either ξ̃ u or ξ̃ v during stages 1 and 2 is not more than n(1+4ε)/2, and so the set of
unused labels will always be at least n−n(1+4ε)/2. Hence, for any choice of pioneer
points x, x′ ∈ η̃i

�t , regardless of the order in which x, x′, y, y′ are assigned labels,
the (conditional) probability that x, y are assigned a common label l and x′, y′ a
common label l′ is no larger than(

1

n − n(1+4ε)/2

)2
≤ 4

n2 for large n.

The proof of (FM) shows that with conditional probability → 1, the number
of pioneer points in η̃i

�t is bounded above by n2(1+δ)ε , and hence the number of
possible choices of the pair x, x′ is no larger than n4(1+δ)ε . Consequently, on the
event F ,

P
{
(Iij ∩ Iij ′) ∩ G | S} ≤ 8n4(1+δ)ε

n2

with probability approaching 1 as n → ∞. But on F [see (F2)], the number of
possible triples i, j, j ′ does not exceed (n(1−ε)(1+δ)/2)3, and so (using the fact that
δ � ε < 1/32)

II = ∑
i

∑
j

∑
j ′

P
{
(Iij ∩ Iij ′) ∩ G | S} ≤ 16n4(1+δ)ε+3(1−ε)(1+δ)/2

n2

= O
(
n− 1

2 + 3δ
2 +8ε) = o(1),

which proves (4.4), since by (FM) the quantity I in (4.4) becomes large.
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4.3.2. Proof of (4.5). This is similar to the proof of (4.4). For a given triple
i, i′, j , the number of possible triples x, x′, y (where , x, x′ are the nearest neigh-
bors of pioneer points x0, x

′
0 ∈ η̃i

�t , and y is the nearest neighbor of j in its free
branch) is bounded above by n4(1+δ)ε on the event F ∩ G. For any such possible
triple x, x′, y, the conditional probability that x, x′, and y will all be assigned the
same label is no larger than 4/n2, by an argument like that in the proof of (4.4).
Therefore, by (4.3), for sufficiently large n,

P
{
(Iij ∩ Ii′j ) ∩ G | S}

1F ≤ 8n4(1+δ)ε

n2 .

On the event F , the number of possible triples i, i′, j is once again bounded above
by (n(1−ε)(1+δ)/2)3, and so

III = ∑
i

∑
i′

∑
j

P
{
(Iij ∩ Ii′j ) ∩ G | S} ≤ O

(
n− 1

2 + 3δ
2 +8ε) = o(1).

4.3.3. Proof of (4.6). The conditional probabilities P {Iij ∩ Ii′j ′ |S} are the
same for all quadruples i, j, i′, j ′ such that i 	= i ′ and j 	= j ′, so it will suffice
to show that there are constants βn → 0 such that with probability approaching 1,

(4.7)

∣∣P {
(Iij ∩ Ii′j ′) ∩ G | S} − P {Iij ∩ G|S}P {Ii′j ′ ∩ G | S}∣∣

≤ βnP {Iij ∩ G|S}P {Ii′j ′ ∩ G|S}
on F .

As in the proof of (4.4), let y be the neighbor of j in j ’s free branch, and y′
the neighbor of j ′ in j ′’s free branch. In order that the event Iij occur, there must
be a pioneer point x0 ∈ η̃i

�t with neighboring vertex x in its free branch such that
y and x are assigned the same label l. Similarly, for Ii′j ′ , there must be a pio-
neer point x′

0 ∈ η̃i′
�t with neighboring vertex x′ in its free branch such that y′ and

x′ are assigned the same label l′. These events are not conditionally independent
given S , because although the numbers of pioneer points x0 ∈ η̃i

�t and x′
0 ∈ η̃i′

�t are
independent, the coloring of vertices in different sectors might interfere (cf. Sec-
tion 3.3.2), and so the occurrence of (say) Iij , which is correlated with the number
of blue pioneer points in η̃i , will also correlate (negatively) with the number of
blue pioneer points in η̃i′ . However, we will show that these correlations are small
as n → ∞.

Define

Ni = #pioneer points xin η̃i
�t ;

Ni′ = #pioneer points xin η̃i′
�t ;

Mi =
∣∣∣∣ ⋃
s≤�t

η̃i
s

∣∣∣∣;



2088 S. LALLEY AND W. SU

Mi′ =
∣∣∣∣ ⋃
s≤�t

η̃i′
s

∣∣∣∣; and

M∗ =
∣∣∣∣ ⋃
t≤t1

ξ̃ u
t

∣∣∣∣ +
∣∣∣∣ ⋃
t≤t1

ξ̃ v
t

∣∣∣∣,
and let Hii′ be the σ -algebra generated by the severed contact processes (η̃i

s)s≤�t

and (η̃i′
s )s≤�t . (Note: Hii′ does not contain information generated by the labeling

or coloring processes.) Clearly, Ni,Ni′,Mi and Mi′ are all measurable with respect
to Hii′ , and M∗ is measurable with respect to S . Recall that the events (I0) in the
definition of Iij and Ii′j ′ , which we now denote by I 0

ij and I 0
i′j ′ , are defined by

I 0
ij = {

Mi ≤ n2(1+δ)ε} and

I 0
i′j ′ = {

Mi′ ≤ n2(1+δ)ε};
since these depend only on the values of Mi and Mi′ , they are measurable relative
to Hii′ .

Recall that on the event F ∩ G, the total number of vertices infected by either
ξ̃ u or ξ̃ v during stages 1 and 2 is not more than n(1+4ε)(1+δ)/2, so at any time
during stages 1 and 2 the pool of unused half-edges will have cardinality at least
dn−n(1+4ε)(1+δ)/2 ≥ dn−dn(1+5ε)/2, regardless of whether or not Iij and/or Ii′j ′
occur. Consequently, since the events Iij and Ii′j ′ require that the labels assigned
to y and y′, respectively, are also given to the vertices x adjacent to pioneer points
x′ in η̃i

�t and η̃i′
�t in their free branches, respectively, we must have

(4.8)

P(Iij ∩ G | S ∨Hii′) ≤ I 0
ijNi/

(
n − n(1+5ε)/2)

,

P(Ii′j ′ ∩ G | S ∨Hii′) ≤ I 0
i′j ′Ni′/

(
n − n(1+5ε)/2)

and

P(Iij ∩ Ii′j ′ ∩ G | S ∨Hii′) ≤ I 0
ij I

0
i′j ′NiNi′/

(
n − n(1+5ε)/2)2

.

Next, we derive lower bounds for the conditional probabilities in (4.8). The
event Iij will occur if (i) all of the labels assigned to vertices in

⋃
s≤�t η̃

i
s are dis-

tinct and are not assigned to any of the vertices in the set Zij , and (ii) for some
pioneer point x′ ∈ η̃i

�t , the label assigned to the free-branch neighbor x is also as-
signed to y. Regardless of the order in which vertices are assigned labels in stage 2,
if G occurs then for each of the Mi vertices to be labeled there is (conditional)
probability at least 1 − n5ε/2−1/2 that it will get a label not yet used. Therefore,

(4.9)

P(Iij | S ∨Hii′ ∨ G)1F∩G

≥ (
1 − n5ε/2−1/2)Mi

(
1 − (

1 − n−1)Ni
)
1F∩GI 0

ij and

P(Ii′j ′ | S ∨Hii′ ∨ G)1F∩G

≥ (
1 − n5ε/2−1/2)Mi′ (1 − (

1 − n−1)Ni′ )1F∩GI 0
i′j ′ .
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By similar reasoning,

(4.10)

P(Iij ∩ Ii′j ′ | S ∨Hii′ ∨ G)1F∩G

≥ (
1 − n5ε/2−1/2)Mi+Mi′ (1 − (

1 − n−1)Ni
)(

1 − (
1 − n−1)Ni′ )

× 1F∩GI 0
ij I

0
i′j ′ .

Clearly,

Ni ≤ Mi ≤ n2(1+δ)ε on I 0
ij and

Ni′ ≤ Mi′ ≤ n2(1+δ)ε on I 0
i′j ′ ;

since 0 < ε < 1/32, the ratios of the lower bounds in (4.9) and (4.10) to the corre-
sponding upper bounds in (4.8) converge to 1 as n → ∞. Finally, since

P
(
G ∩ I 0

ij ∩ I 0
i′j ′ | S) −→ 1

as n → ∞, inequality (4.7) follows.

5. Exponential extinction time. The goal of this section is to prove Theo-
rem 1.3.

Recall that for a graph G = (VG,VE), the edge expansion parameter is defined
as

�E(G,k) = min
S⊂VG,|S|≤k

|E(S,Sc)|
|S| ,

where E(S,Sc) ⊂ VE is the set of edges with one vertex in S and the other vertex
in Sc. Theorem 4.16 [10] implies the following fact.

THEOREM 5.1. Let d ≥ 3. Then for every δ > 0 there exists ε > 0 such that
for asymptotically almost every G ∼ G(n, d), �E(G,εn) ≥ d − 2 − δ.

Fix an integer M > 0. Suppose U ⊂ VG is of size αn, where α > 0. We remove
every vertex in U whose M-neighborhood is not a tree, and denote the remaining
vertex set by U ′. We claim |U ′| = αn−o(n). Here, we are using the following fact
proved in [14] (Lemma 3.2).

PROPOSITION 5.2. Asymptotically almost every G ∼ G(n, d) has at most
o(n) vertices whose �logd−1 logn�-neighborhoods in G are not tree-like.

Since the cardinality of U ′ and U are on the same order of magnitude, with-
out loss of generality, let us assume that all vertices in U have tree-like M-
neighborhoods in G.

We classify vertices in U into 2 categories by looking at their M-neighborhoods
in G in the following way. For v ∈ U , let B(v,M) be the induced subgraph con-
taining all vertices in v’s M-neighborhood in G. B(v,M) \ {v} has d connected
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components, call them C1(v),C2(v), . . . ,Cd(v). If Ci(v) contains no other ver-
tices in U , call it a free branch of depth M of v.

• Color v black if at least one of C1(v),C2(v), . . . ,Cd(v) is a free branch of depth
M of v.

• Color v white if none of C1(v),C2(v), . . . ,Cd(v) is a free branch of depth M

of v.

PROPOSITION 5.3. Fix M ∈ N. There exists ε = ε(M) > 0, such that for
asymptotically almost every G ∼ G(n, d) the following statement holds: for any set
U ⊂ VG satisfying |U | ≤ εn and that every vertex in U has its M-neighborhood
in G being a tree, then U has at least |U |/4 black vertices.

PROOF. We will construct a subset of vertices W ⊂ VG. First of all, W

contains all vertices in U . Moreover, we are going to add some vertices into
W based on the white vertices of U . Let v ∈ U be a white vertex. In each of
C1(v),C2(v), . . . ,Cd(v), there must be at least another vertex in U . Suppose
x ∈ U ∩ Ci(v), then for the pair (v, x), we add into W every vertex along the
(unique) geodesic between v and x. We repeat this operation for every possible
pair (v, x) to obtain W .

Such constructed W contains 3 types of vertices: black vertices of U , white
vertices of U , and the vertices which are added by the above procedure (color
them grey). Now let us count their contributions to E(W,Wc):

• A white vertex will contribute 0 edge to E(W,Wc). This is because all of its d

neighboring vertices are already in W by our construction.
• A black vertex can contribute at most d edges to E(W,Wc), possibly fewer.
• A grey vertex can contribute at most d − 2 edges to E(W,Wc), possibly fewer.

This is because by our construction a grey vertex must be sitting on the geodesic
between two other vertices in U and, therefore, at least 2 out of its d neighboring
vertices are already in W .

Suppose in U there are w white vertices, b black vertices. Then g, the number of
grey vertices in W , satisfies g ≤ (d + d(d − 1) + · · · + d(d − 1)M−1)w := NMw.

By Theorem 5.3, there exists εM such that on a typical random regular graph G,
�E(G,εMn) ≥ d − 2 − (3d − 8)/(3NM + 4). This forces the following inequality
(provided b + w + g ≤ εMn),

0w + db + (d − 2)g ≥ E
(
W,Wc) ≥

(
d − 2 − 3d − 8

3NM + 4

)
(w + b + g).

Together with g ≤ NMw, this implies that

b

b + w
≥ 1

4
.
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Let ε′
M = εM/(NM + 1) (this guarantees that if b + w ≤ ε′

Mn then b + w + g ≤
εMn). As long as |U | ≤ ε′

Mn and every vertex in U has its M-neighborhood in G

being a tree, then U has at least |U |/4 black vertices. �

Denote by �M the finite rooted tree of depth M in which the root O (at depth 0)
has one neighbor at depth 1, and each vertex at depth 1 ≤ j < M has d − 1 neigh-
bors at depth j + 1. Let {ηO,�M

t }t≥0 be a contact process on �M with initial con-
figuration {O}. The following statement is an easy corollary of Proposition 2.3.

COROLLARY 5.4. For every N > 0, there exist T > 0 and M ∈ N such that
E|ηO,�M

T | ≥ N .

PROOF OF THEOREM 1.3. Let G be a typical graph as in Proposition 5.1, 5.2
and 5.3. Choose M ≥ 1 and T such that E|ηO,�M

T | ≥ 10; Corollary 5.4 guarantees
that this is possible. Without loss of generality, assume T ≥ 1. Furthermore, choose
L > 0 large enough such that Emin(|ηO,�M

T |,L) ≥ 9.
Let ε = ε(2M) be the constant in Proposition 5.3. As long as U ⊂ VG is of size

εn, then there will be at least εn/2 vertices in U such that each vertex has its 2M-
neighborhood being a tree, and by Proposition 5.3 there will be at least εn/8 black
vertices. We enumerate the black vertices to be v1, v2, . . . , vk where k ≥ εn/8.

Each vertex vi has one free branch of depth 2M (if there is more than one,
choose the “leftmost”). Add vi (and the edge connected to vi ) to its free branch of
depth M (as a subgraph of the branch of depth 2M) to obtain a subgraph isomor-
phic to �M . Since the free branches are of depth 2M , the copies of �M attached
to different vertices vi are disjoint. For each vi , run an independent contact process
on its copy of �M , and denote this by {ηvi

t }t≥0. By a standard construction, we can
couple

⋃k
i=1 η

vi

T and
⋃k

i=1 ξ
vi

T so that
⋃k

i=1 η
vi

T is dominated by
⋃k

i=1 ξ
vi

T .
Let Xi = min(|ηvi

T |,L); by construction, EXi ≥ 9 and 0 ≤ Xi ≤ L. Further-
more, the random variables (Xi)1≤i≤k are i.i.d. variables, so, by Hoeffding’s in-
equality,

P

{
k∑

i=1

(Xi − 9) ≤ −k

}
≤ exp

(
− 2k

L2

)
≤ exp

(
− εn

4L2

)
;

thus, after time T , with probability at least 1 − exp(−εn/(4L2)), we will observe
at least 8k ≥ εn infections in

⋃k
i=1 η

vi

T .
Therefore, as long as the contact process has initial configuration with cardinal-

ity at least εn, then with probability at least 1− exp(−εn/(4L2)), after time T , the
infected set will have cardinality at least εn. Consequently, if β = ε/(8L2) then

PG

{
ξG

exp(βn)T 	= ∅
} ≥ 1 − exp(βn) exp

(
− εn

4L2

)
= 1 − o(1). �
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REMARK 5.5. One can slightly change the above proof to show the following
statement. There exists a constant ε0 > 0. For every 0 < ε ≤ ε0, there exists βε > 0,
such that for asymptotically almost every G ∼ G(n, d), for any U ⊂ VG with |U | =
εn, we have

PG

{
ξU

exp(βεn) 	= ∅
} = 1 − o(1).

6. Asymptotic infection density. Recall that 0 < ε < 1/32. Throughout this
section, let t+ = (1 + ε) logn/cλ. Let gn(ε) be as in Theorem 1.1. Say that a pair
of vertices (u, v) ∈ [n] × [n] is good if

PG

{
v ∈ ξu

t+
} ≥ (

1 − gn(ε)
)
p2

λ.

Say that a vertex u ∈ [n] is good if the set{
v ∈ [n] : v 	= u, (u, v) is a good pair

}
has cardinality at least (1 − 4

√
gn(ε))(n − 1). A simple application of the Markov

inequality, together with Theorem 1.1, yields the following proposition.

PROPOSITION 6.1. For asymptotically almost every G, the number of good
pairs is at least (1 − √

gn(ε))n(n − 1), and the number of good vertices is at least
(1 − 4

√
gn(ε))n.

The choice of
√

gn and 4
√

gn in the definition of good pair/vertex and in the
above proposition is not crucial; it is enough that they are o(1). Proposition 6.1
shows that the good pairs and vertices are indeed typical.

PROPOSITION 6.2. Suppose u ∈ [n] is a good vertex, and ξu
t is a contact

process with initial state {u} on G. Then there exist constants hn(ε) → 0 as n →
∞ such that for asymptotically almost every G ∼ G(n, d),(

1 + hn(ε)
)
pλ ≥ PG

{
ξu
t+ 	= ∅

} ≥ (
1 − hn(ε)

)
pλ.

PROOF. First, PG{ξu
t+ 	=∅} ≤ (1 + o(1))pλ, because

(6.1) PG

{
ξu
t+ 	= ∅

} ≤ P{ξ̃t+ 	=∅} = (
1 + o(1)

)
pλ,

where (ξ̃t )t≥0 is a contact process on T with the root as the initial configuration.
It remains to show the lower bound. Set

Su = ∑
v∈V (G),v 	=u

1{v∈ξu
t+}.

Since u is a good vertex,

EGSu ≥ (
1 − o(1)

)
p2

λn,
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where here and for the remainder of this section, o(1) terms only depend on n but
not u or G. On the other hand,

S2
u = ∑

v∈[n]\{u}

∑
w∈[n]\{u}

1{v∈ξu
t+ ,w∈ξu

t+}

and

EGS2
u = ∑

v∈[n]\{u}

∑
w∈[n]\{u}

PG

{
v ∈ ξu

t+,w ∈ ξu
t+

}
.

Let t+ = t+,1 + t+,2, where t+,1 = t+,2 = t+/2, The event {v ∈ ξu
t+, u ∈ ξu

t+} will
occur if and only if there exits open paths (in the percolation structure used to
construct the contact process) starting from u that reach both v and w in time t+.
This requires that both of the following events happen:

(a) u infects some (random) subset Z ⊂ [n] at time t+,1; and
(b) Z infects both v and w in time interval [t+,1, t+].

Let ξu
t , ξv

t , ξw
t be 3 mutually independent contact processes, with initial configu-

rations {u}, {v} and {w}, respectively. By duality, we can reverse the time axis in
the second event; this shows that events (a)–(b) are no easier than observing the
following two events:

(c) ξu
t survives to time t+,1;

(d) ξv
t and ξw

t both survive to time t+,2.

It is easy to see that the PG-probability of observing both the events above, is no
larger than (1 + o(1))p3

λ, because of (6.1).
Therefore, for each pair (v,w),

PG

{
v ∈ ξu

t+,w ∈ ξu
t+

} ≤ (
1 + o(1)

)
p3

λ,

which implies

EGS2
u ≤ (

1 + o(1)
)
p3

λn
2.

Now since u is a good vertex,

EG{Su | Su > 0} = EGSu

PG{Su > 0} ≥ (1 − o(1))p2
λn

PG{Su > 0} ,

while

EG

{
S2

u | Su > 0
} = EGS2

u

PG{Su > 0} ≤ (1 + o(1))p3
λn

2

PG{Su > 0} .

However, by Jensen’s inequality, EG{Su | Su > 0}2 ≤ EG{S2
u | Su > 0}, and so

PG{Su > 0} ≥ (
1 − o(1)

)
pλ. �

The preceding proof also provides a good estimate of the size of ξu
t+ .
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PROPOSITION 6.3. Suppose u ∈ [n] is a good vertex, and ξu
t is a contact

process with initial state {u}. Fix ε > 0. Then there exist constants kn(ε) → 0 as
n → ∞ such that for asymptotically almost every G,

PG

{
(1 − δ)npλ ≤ Su ≤ (1 + δ)npλ | Su > 0

} ≥ 1 − kn(ε).

PROOF. From Proposition 6.2, PG{Su > 0} ≥ (1−o(1))pλ. On the other hand,
PG{Su > 0} ≤ (1 + o(1))pλ. These two bounds combined with the calculation in
the proof of Proposition 6.2 imply that

EG

{
S2

u | Su > 0
} ≤ (

1 + o(1)
)
EG{Su | Su > 0}2.

The result now follows by Chebyshev’s inequality. �

PROOF OF ASSERTION (1.3) OF THEOREM 1.2. Let

S = ∑
v∈[n]

1{v∈ξG
t+}.

By duality of the contact process, Proposition 6.1 and Proposition 6.2,

EGS ≥ (
1 − o(1)

)
npλ.

On the other hand, by a similar argument as in the proof of Proposition 6.2, we
have

EGS2 ≤ (
1 + o(1)

)
n2p2

λ.

Therefore,

EGS2 ≤ (
1 + o(1)

)
(EGS)2,

and so (1.3) follows by Chebyshev’s inequality. �

We need several lemmas before we prove assertion (1.4).

LEMMA 6.4. There exists γ > 0, such that for asymptotically almost every
G ∼ G(n, d), for any two vertices u, v of G,

PG

{
v ∈ ξu

2 logd−1 n

} ≥ n−γ .

PROOF. By [4], the diameter of a typical random regular graph is (1 +
o(1)) logd−1 n. Therefore, on such a graph, for any pair of vertices (u, v), the
graph distance between u and v is no more than (1 + o(1)) logd−1 n. Assume
dist (u, v) = l, this means we can find a sequence of vertices (wi)0≤i≤l , with
w0 = u, wl = v, and that wi is connected to wi+1 in the graph.

One way of observing {v ∈ ξu
2 logd−1 n} is as follows. In time interval [i, i + 1]

for 0 ≤ i ≤ l − 1, we require the infection at vertex wi to go to wi+1, and stay
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there alive until the end of the time interval. This will happen with probability
p ≥ (1 − e−λ)e−1. In time interval [l,2 logd−1 n], we require the infection at v to
stay alive. This will have probability at least e−(2 logd−1 n−l). Therefore, the over-
all probability is at least ple−(2 logd−1 n−l) ≥ (1 − e−λ)2 logd−1 ne−2 logd−1 n ≥ n−γ

where γ = 2/ log(d − 1) + 2 log(eλ/(eλ − 1))/ log(d − 1). �

LEMMA 6.5. There exists δ0 > 0, such that for asymptotically almost every
G ∼ G(n, d), for any v ∈ VG,

PG

{∣∣ξv
n2γ

∣∣ ≥ δ0n | ξv
n2γ 	= ∅

} = 1 − o(1).

PROOF. For asymptotically almost every G ∼ G(n, d), there are n−o(n) good
vertices by Proposition 6.1. In particular, there is at least one good vertex. Fix one
good vertex in G, call it w. Our idea is as follows. Subdivide the time interval
[0, n2γ ] into [0, T ], [T ,2T ], . . . , [(M − 1)T ,MT ], where M = �n2γ /T � and T

will be specified later. We will define an event H and ask if H occurs in each
interval [iT , (i + 1)T ]. The chance that it happens in each time interval will be of
order n−γ . This event is constructed such that as long as in at least one of these
intervals the event happens, then with probability approaching 1 at the end we will
see δ0n infections.

Here are the details. Let T = 2 logd−1 n + (1 + ε) logn/cλ, where this 0 < ε <

1/8 is the same as in Theorem 1.1. We say that we observe a success H in time
interval [(i − 1)T , iT ] if the following two events happen:

(e) w ∈ ξv
(i−1)T +2 logd−1 n;

(f) |ξv
iT | ≥ npλ/2.

Conditional on ξv
n2γ 	= ∅, it is certain that ξv

(i−1)T 	= ∅, so by Lemma 6.4, the event
{w ∈ ξv

(i−1)T +2 logd−1 n} happens with probability at least n−γ (notice that the event
{w ∈ ξv

(i−1)T +2 logd−1 n} is positively correlated with the event {ξv
n2γ 	= ∅}). Given

{w ∈ ξv
(i−1)T +2 logd−1 n}, since w is a good vertex, by Proposition 6.3, |ξv

iT | ≥ npλ/2
will happen with probability at least pλ/2.

Therefore, overall we have order (n2γ / logn) trials, each with success probabil-
ity at least pλn

−γ /2, so the chance of having at least 1 success is 1 − o(1). Given
that we observe a success, which means that we observe pλn/2 infections at some
time between [0, n2γ ], from the proof of Theorem 1.3 and Remark 5.5, we know
that the chance of pλn/2 infections not lasting exponentially long time before the
size of infections shrinks to δ0n is exponentially small in n, where δ0 can be taken
as min(ε0,pλ/2). Therefore, the overall probability is 1 − o(1). �

PROOF OF ASSERTION (1.4) OF THEOREM 1.2. The upper bound follows
from Assertion (1.3), because

ξG
tn−t+ ⊂ VG,
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which implies ξG
tn

is dominated by ξ
VG
t+ .

Now we prove the lower bound. There are 2 scenarios: tn > n2γ + t+ or tn ≤
n2γ + t+, where γ is the same as in Lemma 6.4.

CASE 1. tn ≤ n2γ + t+.
Since n2γ < exp(βn) for large enough n, from the proof of Theorem 1.3 we

know that at time tn − t+, with chance 1 − o(1), for some ε0 > 0,∣∣ξG
tn−t+

∣∣ ≥ ε0n,

which suggests that at time tn − t+ there are plenty of infections and, therefore, if
we run the contact process for another t+ time, a similar second moment argument
as in proof of Proposition 6.2 or proof of Theorem 1.3 will prove the desired lower
bound.

CASE 2. tn > n2γ + t+.
In this case, from Lemma 6.5 we know that with probability 1 − o(1), at time

tn − t+, ∣∣ξG
tn−t+

∣∣ ≥ δ0n,

where δ0 is the same as in Lemma 6.5. The rest is the same as in Case 1. �
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