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Abstract

We consider a model for gene regulatory networks that is a modification of Kauff-
mann’s (1969) random Boolean networks. There are three parameters: n = the number
of nodes, r = the number of inputs to each node, and p = the expected fraction of 1’s in
the Boolean functions at each site. Following a standard practice in the physics litera-
ture, we use a threshold contact process on a random graph in which each node has in
degree r to approximate its dynamics. We show that if r ≥ 3 and r ·2p(1−p) > 1, then
the threshold contact process persists for a long time, which corresponds to chaotic
behavior of the Boolean network. Unfortunately, we are only able to prove the persis-
tence time is ≥ exp(cnb(p)) with b(p) > 0 when r · 2p(1 − p) > 1 and b(p) = 1 when
(r − 1) · 2p(1− p) > 1.
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1 Introduction

Random Boolean networks were originally developed by Kauffman (1969) as an abstraction
of genetic regulatory networks. The idea is to identify generic properties and patterns of
behavior for the model, then compare them with the behavior of real systems. Protein
and RNA concentrations in networks are often modeled by systems of differential equations.
However, in large networks the number of parameters such as decay rates, production rates
and interaction strengths can become huge. Recent work by Albert and Othmer (2003)
on the segment polarity network in Drosophila melanogaster, see also Chaves, Albert and
Sontag (2005), has shown that Boolean networks can in some cases outperform differential
equation models. Kauffman et al. (2003) used random Boolean networks to model the yeast
transcriptional network, and Li et al (2004) have used this approach to model the yeast
cell-cycle network.

In our random Boolean network model, the state of each node x ∈ Vn = {1, 2, . . . , n} at
time t = 0, 1, 2, . . . is ηt(x) ∈ {0, 1}. Each node x has r input nodes y1(x), . . . , yr(x) chosen
randomly from the set of all nodes, and we draw oriented edges to each node from its input
nodes. So the edge set is En = {(yi(x), x) : x ∈ Vn, 1 ≤ i ≤ r}. Thus the underlying graph
Gn is a random element chosen from the set of all directed graphs in which the in-degree of
any vertex is equal to r. Once chosen the network remains fixed through time. The updating
for node x is

ηt+1(x) = fx(ηt(y1(x)), . . . , ηt(yr(x))),

where the values fx(v), x ∈ Vn, v ∈ {0, 1}r, chosen at the beginning and then fixed for all
time, are independent and = 1 with probability p.

A number of simulation studies have investigated the behavior of this model. See
Kadanoff, Coppersmith, and Aldana (2002) for survey. Flyvberg and Kjaer (1988) have
studied the degenerate case of r = 1 in detail. Derrida and Pommeau (1986) have shown
that for r ≥ 3 there is a phase transition in the behavior of these networks between rapid
convergence to a fixed point and exponentially long persistence of changes, and identified
the phase transition curve to be given by the equation r · 2p(1 − p) = 1. The networks
with parameters below the curve have behavior that is ‘ordered’ and those with parameters
above the curve have ‘chaotic’ behavior. Since chaos is not healthy for a biological network,
it should not be surprising that real biological networks avoid this phase. See Kauffman
(1993), Shmulevich, Kauffman, and Aldana (2005), and Nykter et al. (2008).

To explain the intuition behind the result of Derrida and Pomeau (1986), we define
another process ζt(x) for t ≥ 1. The idea is that ζt(x) = 1 if and only if ηt(x) 6= ηt−1(x).
Now if the state of at least one of the inputs y1(x), . . . , yr(x) into node x has changed at
time t, then the state of node x at time t+1 will be computed by looking at a different value
of fx. If we ignore the fact that we may have used this entry before, we get the dynamics of
the threshold contact process

P (ζt+1(x) = 1) = 2p(1− p) if ζt(y1(x)) + · · ·+ ζt(yr(x)) > 0
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and ζt+1(x) = 0 otherwise. Conditional on the state at time t, the decisions on the values of
ζt+1(x), x ∈ Vn are made independently.

We content ourselves to work with the threshold contact process since it gives an approx-
imate sense of the original model and we can prove rigorous results about its behavior. To
simplify notation and explore the full range of threshold contact processes we let q = 2p(1−p)
and suppose 0 ≤ q ≤ 1. As mentioned above, it is widely accepted that the condition for
prolonged persistence of the threshold contact process is qr > 1. To explain this, we note
that vertices in the graph have average out-degree r, so a value of 1 at a vertex will, on the
average, produce qr 1’s in the next generation.

To state our first result, we will rewrite the threshold contact process as a set valued
process ξt = {x : ζt(x) = 1}. We will refer to the vertices x ∈ ξt as occupied. Let {ξ1

t }t≥0

be the threshold contact process starting from all occupied sites, and ρ be the survival
probability of a branching process with offspring distribution pr = q and p0 = 1 − q. By
branching process theory

ρ = 1− θ, where θ ∈ (0, 1) satisfies θ = 1− q + qθr. (1.1)

Theorem 1. Suppose q(r − 1) > 1 and let δ > 0. There is a positive constant C(δ) so that
as n →∞

inf
t≤exp(C(δ)n)

P

(
|ξ1

t |
n

≥ ρ− 2δ

)
→ 1.

To prove this result, we will consider the dual coalescing branching process ξ̂t. In this
process if x is occupied at time t, then with probability q all of the sites y1(x), . . . , yr(x) will
be occupied at time t+1, and birth events from different sites are independent. Writing A and
B for the initial sets of occupied sites in the two processes we have the duality relationship:

P (ξA
t ∩B 6= ∅) = P (ξ̂B

t ∩ A 6= ∅), t = 0, 1, 2, . . . . (1.2)

Taking A = {1, 2, . . . , n} and B = {x} this says

P (x ∈ ξ1
t ) = P (ξ̂

{x}
t 6= ∅),

or the density of occupied sites in ξ1
t is equal to the probability that ξ̂{x} − s survives until

time t. Since over small distances our graph looks like a tree in which each vertex has r
descendants, the last quantity ≈ ρ.

From (1.2) it should be clear that we can prove Theorem 1 by studying the coalescing
branching process. The key to this is an “isoperimetric inequality.” Let Ĝn be the graph
obtained from our original graph Gn = (Vn, En) by reversing the edges. That is, Ĝn =
(Vn, Ên), where Ên = {(x, y) : (y, x) ∈ En}. Given a set U ⊂ Vn, let

U∗ = {y : x → y for some x ∈ U}, (1.3)

where x → y means (x, y) ∈ Ên. Note that U∗ can contain vertices of U . The idea behind
this definition is that if U is occupied at time t in the coalescing branching process, then the
vertices in U∗ may be occupied at time t + 1.
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Theorem 2. Let P (m, k) be the probability that there is a subset U ⊂ Vn with size |U | = m
so that |U∗| ≤ k. Given η > 0 there is an ε0(η) so that for m ≤ ε0n

P (m, (r − 1− η)m) ≤ exp(−ηm log(n/m)/2).

In words, the isoperimetric constant for small sets is r− 1. It is this result that forces us to
assume q(r−1) > 1 in Theorem 1. To see that Theorem 2 is sharp, define an undirected graph
Hn on the vertex set Vn so that x and y are adjacent if and only if there is a z so that x → z
and y → z in Ĝn. The mean number of neighbors of a vertex in Hn is r2 ≥ 9, so standard
arguments show that there is a c > 0 so that with probability tending to 1 as n →∞ there
is a connected component Kn of Hn with |Kn| ≥ cn. If U is a connected subset of Kn with
|U | = m then by building up U one vertex at a time we see that |U∗| ≤ 1 + (r − 1)m.

Since the isoperimetric constant is ≤ r − 1, it follows that when q(r − 1) < 1, there are
bad sets A with |A| ≤ nε so that E|ξ̂A

1 | ≤ |A|. Computations from the proof of Theorem
2 suggest that there are a large number of bad sets. We have no idea how to bound the
amount of time spent in bad sets, so we have to take a different approach to show persistence
when 1/r < q ≤ 1/(r − 1).

Theorem 3. Suppose qr > 1. If δ0 is small enough, then for any 0 < δ < δ0, there are
constants C(δ) > 0 and B(δ) = (1/4− 2δ) log(qr − δ)/ log r so that as n →∞

inf
t≤exp(C(δ)·nB(δ))

P

(
|ξ1

t |
n

≥ ρ− 3δ

)
→ 1.

To prove this, we will again investigate persistence of the dual. Let d0(x, y) be the length
of the shortest oriented path from x to y in Ĝn, let

d(x, y) = min
z∈Vn

[d0(x, z) + d0(y, z)],

and for any subset A of vertices let

m(A, K) = max
S⊆A

{|S| : d(x, y) ≥ K for x, y ∈ S}. (1.4)

Let R = log n/ log r be the average value of d(1, y), let a = 1/4− δ and B = (a− δ) log(qr−
δ/ log r. We will show that if m(ξ̂A

s , 2aR) < (ρ− 2δ)nB, then with high probability, we will
later have m(ξ̂A

t , 2aR) ≥ (ρ − 2δ)nB. To do this we first argue that when we first have
m(ξ̂A

s , 2aR) < (ρ − 2δ)nB, there are at least (q − δ)(ρ − 2δ)nB occupied sites so that the d
distance between any two vertices is at least 2aR−2. We run the dual process starting from
these vertices until time aR − 2, so they are independent. With high probability at least
one of these vertices, call it w, has nB descendants. We run the dual processes starting from
these nB vertices for another aR units of time, and then pick one offspring from each of the
duals which have survived till time aR to have a set that is suitably spread out and has size
at least (ρ− 2δ)nB. It seems foolish to pick only one vertex w after the first step, but we do
not know how to guarantee that the vertices are suitably separated after the second step if
we pick more.
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2 Proof of Theorem 1

We begin with the proof of the isoperimetric inequality, Theorem 2.

Proof of Theorem 2. Let P (m, k) be the probability that there is a set U of vertices in Ĝn

of size m with |U∗| ≤ k. Let p(m, k) be the probability that there is a set U with |U | = m
and |U∗| = k. First we will estimate p(m, `) where ` = (r − 1− η)m.

p(m, `) =
∑

{(U,U ′):|U |=m,|U ′|=`}

P (U∗ = U ′) ≤
∑

{(U,U ′):|U |=m,|U ′|=`}

P (U∗ ⊂ U ′).

According to the construction of Gn, the other end of each of the r|U | edges coming out of
U is chosen at random from Vn so

P (U∗ ⊂ U ′) =

(
|U ′|
n

)r|U |

,

and hence

p(m, `) ≤
(

n

m

)(
n

`

)(
`

n

)rm

. (2.1)

To bound the right-hand side, we use the trivial bound(
n

m

)
≤ nm

m!
≤
(ne

m

)m

, (2.2)

where the second inequality follows from em > mm/m!. Using (2.2) in (2.1)

p(m, `) ≤ (ne/m)m(ne/`)`

(
`

n

)rm

.

Recalling ` = (r − 1− η)m, the last expression becomes

= em(r−η)(m/n)m[−1−(r−1−η)+r](r − 1− η)−(r−1−η)m+rm.

Letting c(η) = r − η + (1 + η) log(r − 1− η) ≤ C for η ∈ (0, r − 1), we have

p(m, (r − 1− η)m) ≤ exp(−ηm log(n/m) + Cm).

Summing over integers k = (r − 1− η′)m with η′ ≥ η, and noting that there are fewer than
rm terms in the sum, we have

P (m, (r − 1− η)m) ≤ exp(−ηm log(n/m) + C ′m).

To clean up the result to the one given in Theorem 2, choose ε0 such that η log(1/ε0)/2 >
C ′. Hence for any m ≤ ε0n,

η log(n/m)/2 ≥ η log(1/ε0)/2 > C ′,

which gives the desired result.
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To grow the cluster starting at a vertex x in Ĝn, we add the neighbors in a breadth-first
search. That is, we add all vertices y for which d0(x, y) = j one at a time, before proceeding
to the vertices at distance j + 1.

Lemma 2.1. Suppose 0 < δ < 1/2. Let Ax be the event that the cluster starting at x in Ĝn

does not intersect itself before reaching size n1/2−δ, and let Ax,y be the event that the clusters
starting from x and y do not intersect before reaching size n1/2−δ. Then for all x, y ∈ Vn

P (Ac
x), P (Ac

x,y) ≤ n−2δ. (2.3)

Proof. Let δ′ = 1/2 − δ. While growing the cluster starting from x up to size nδ′ , the
probability of a self-intersection at any step is ≤ nδ′/n, so

P (Ax) ≥
(
1− n−(1−δ′)

)nδ′

≥ 1− n2δ′−1 = 1− n−2δ.

The exact same reasoning applied to the cluster containing x intersecting the cluster of y
grown to size n1/2−δ.

Lemma 2.1 shows that Ĝn is locally tree-like. In the next lemma, we will use this to get
a bound on the survival of the dual process for small times. Let ρ be the branching process
survival probability defined in (1.1).

Lemma 2.2. If q > 1/r, δ ∈ (0, qr − 1), γ = (20 log r)−1, and b = γ log(qr − δ) then for
large n

P
(∣∣∣ξ̂{x}2γ log n

∣∣∣ ≥ nb
)
≥ ρ− δ.

Proof. Let Ax be the event that the cluster starting at x in Ĝn does not intersect itself before
reaching size n1/4. On the event Ax, for t ≤ 2γ log n, |ξ̂{x}t | = Zt, is a branching process with
Z0 = 1 and offspring distribution p0 = 1− q and pr = q. Since q > 1/r, this is a supercritical
branching process. Let Bx be the event that the branching process survives. If we condition
on Bx, then, using a large deviation results for branching processes from Athreya (1994),

P

(∣∣∣∣Zt+1

Zt

− qr

∣∣∣∣ > δ

∣∣∣∣Bx

)
≤ e−c(δ)t (2.4)

for large enough t. So if Fx = {Zt+1 ≥ (qr − δ)Zt for γ log n ≤ t < 2γ log n}, then

P (F c
x |Bx) ≤

(2γ log n)−1∑
t=γ log n

e−c(δ)t ≤ Cδn
−c(δ)γ (2.5)

for large enough n. On the event Bx ∩ Fx, Z2γ log n ≥ (qr − δ)γ log n = nγ log(qr−δ), since
Z(γ log n) ≥ 1. Combining the error probabilities of (2.3) and (2.5)

P
(∣∣∣ξ̂{x}2γ log n

∣∣∣ ≥ nγ log(qr−δ)
)
≥ P (Bx)− P (Ac

x)− P (F c
x |Bx) ≥ P (Bx)− δ

for large enough n, as P (Ax) ≥ 1− n−1/2 by Lemma 2.1.
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Lemma 2.2 shows that the dual process starting from one vertex will with probability
≥ ρ− δ survive until there are nb particles. The next lemma will show that if the dual starts
with nb particles, then it can reach εn particle with high probability.

Lemma 2.3. If q(r − 1) > 1, then there exists ε0 = ε0(q) > 0 such that for any A with
|A| = nb the dual process {ξ̂A

t }t≥0 satisfies

P

(
max

t≤ε0n−nb
|ξ̂A

t | < ε0n

)
≤ exp(−nb/4).

Proof. Choose η > 0 such that (q−η)(r−1−η) > 1 and let ε0(η) be the constant in Theorem
2. Let τ = min{t : |ξ̂A

t | ≥ ε0n}. For t < τ , let Ft = {|ξ̂A
t | ≥ |ξ̂A

t−1| + 1}. Then for t ≥ 0
P (Ft+1) ≥ P (Bt ∩ Ct), where

Bt = {at least (q − η)|ξ̂A
t | particles of ξ̂A

t give birth},
Ct = {|U∗

t | ≥ (r − 1− η)|Ut|}, where Ut = {x ∈ ξ̂A
t : x gives birth}.

Using the binomial large deviations, see Lemma 2.3.3 on page 40 in Durrett (2007)

P (Bt) ≥ 1− exp(−γ((q − η)/q)q|ξ̂A
t |), (2.6)

where γ(x) = x log x− x + 1 > 0 for x 6= 1. On Gt = ∩t
s=1Fs, |ξ̂A

t | ≥ nb and so

P (Bt|Gt) ≥ 1− exp(−γ((q − η)/q)qnb).

Since for t < τ , we have |ξ̂A
t | < ε0n, we can use Theorem 2 and the fact, that |Ut| ≥

(q − η)nb ≥ nb/(r − 1) on Gt ∩Bt, to get

P (Ct|Gt ∩Bt) ≥ 1− exp

(
−η

2

nb

r − 1
log

n(r − 1)

nb

)
.

Combining these two bounds we get P (Bt ∩ Ct|Gt) ≥ 1 − exp(−nb/2) for large n. Since
τ ≤ ε0n− nb on Gε0n−nb ,

P
(
τ > ε0n− nb

)
≤ P (∪εn−nb

t=1 F c
t ) ≤ (ε0n− nb) exp(−nb/2) ≤ exp(−nb/4)

for large n and we get the result.

The next result shows that if there are εn particles at some time, then the dual survives
for time exp(cn).

Lemma 2.4. If q(r− 1) > 1, then there exists constants c, ε0 > 0 such that for T = exp(cn)
and any A with |A| ≥ ε0n,

P

(
inf
t≤T

∣∣∣ξ̂A
t

∣∣∣ < ε0n

)
≤ 2 exp(−cn).
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Proof. Choose η > 0 so that (q−η)(r−1−η) > 1, and then choose ε0(η) > 0 as in Theorem
2. For any A with |A| ≥ ε0n, let U ′

t = {x ∈ ξ̂A
t : x gives birth}. If |U ′

t| ≤ ε0n, then take
Ut = U ′

t . If |U ′
t| > ε0n, we have too many vertices to use Theorem 2, so we let Ut be the

subset of U ′
t consisting of the ε0n vertices with smallest indices. Let

Ft = {|ξ̂A
t | ≥ ε0n} Gt = ∩t

s=0Fs

Bt = {at least (q − η)|ξ̂A
t | particles of ξ̂A

t give birth}
Ct = {|U∗

t | ≥ (r − 1− η)|Ut|}.

Now for t ≥ 0, Ft+1 ∩ Gt ⊃ Bt ∩ Ct ∩ Gt. Using our binomial large deviations result
(2.6) again, P (Bt) ≥ 1 − exp(−γ((q − η)/q)q|ξ̂A

t |). On the event Ft, |ξ̂A
t | ≥ ε0n, and so

P (Bt|Gt) ≥ 1 − exp(−γ((q − η)/q)qε0n). Since |Ut| ≤ ε0n, and on the event Gt ∩ Bt

|Ut| ≥ (q − η)ε0n ≥ ε0n/(r − 1), using Theorem 2 we have

P (Ct|Gt ∩Bt) ≥ 1− exp

(
−η

2

ε0n

r − 1
log

r − 1

ε0

)
.

Combining these two bounds P (Ft+1|Gt) ≥ 1− 2 exp(−2c(η)n), where

c(η) =
1

2
min

{
γ

(
q − η

q

)
qε0,

η

2

ε0

r − 1
log

r − 1

ε0

}
.

Hence for T = exp(c(η)n)

P

(
inf
t≤T

∣∣∣ξ̂A
t

∣∣∣ < ε0n

)
≤ P (∪T

t=1F
c
t ) ≤

T−1∑
t=0

P (F c
t+1|Gt) ≤ 2 exp(−c(η)n).

Lemma 2.4 confirms prolonged persistence for the dual. We will now give the

Proof of Theorem 1. Choose δ ∈ (0, qr−1) and γ = (20 log r)−1. Define the random variables

Yx, 1 ≤ x ≤ n, as Yx = 1 if the dual process {ξ̂{x}t }t≥0 starting at x satisfies |ξ̂{x}2γ log n| ≥ nb for
b = γ log(qr − δ) and Yx = 0 otherwise. By Lemma 2.2, if n is large then EYx ≥ ρ − δ for
any x.

If we grow the cluster starting from x in a breadth-first search then all the vertices at
distance ≤ 2γ log n from x are in the cluster of size n2γ log r ≤ n1/10. So if Ax,z is the event
that the clusters of size n1/10 starting from x and z do not intersect, then

P (Yx = 1, Yz = 1)− P (Yx = 1)P (Yz = 1) ≤ P (Ac
x,z) ≤ n−4/5

by Lemma 2.1. Using this bound,

var

(
n∑

x=1

Yx

)
≤ n + n(n− 1)n−4/5,
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and Chebyshev’s inequality shows that as n →∞

P

(∣∣∣∣∣
n∑

x=1

(Yx − EYx)

∣∣∣∣∣ ≥ nδ

)
≤ n + n(n− 1)n−4/5

n2δ2
→ 0.

Since EYx ≥ ρ− δ, this implies

lim
n→∞

P

(
n∑

x=1

Yx ≥ n(ρ− 2δ)

)
= 1. (2.7)

Choose η > 0 so that (q− η)(r− 1− η) > 0. Let ε0 and c(η) be the constants in Lemma

2.4. Now if Yx = 1, Lemma 2.2 shows that |ξ̂{x}T1
| ≥ nb for T1 = 2γ log n. Combining the error

probabilities of Lemmas 2.3 and 2.4, shows that within the next T2 = exp(c(η)n) + ε0n− nb

units of time the dual process contains at least ε0n many particles with probability ≥ 1 −
2 exp(−nb/4) for large n.

Using the duality property of the threshold contact process we see that for any subset B
of vertices

P (ξ1
T1+T2

⊃ B) = P
(
ξ̂
{x}
T1+T2

6= ∅ ∀x ∈ B
)

≥ P
(
|ξ̂{x}T1+T2

| ≥ ε0n ∀x ∈ B
)

≥ P (Yx = 1 ∀x ∈ B) · (1− 2|B| exp(−nb/4))

≥ P (Yx = 1 ∀x ∈ B) · (1− 2 exp(−nb/8)),

as |B| ≤ n. Hence for T = T1 +T2 using the attractiveness property of the threshold contact
process and combining the last calculation with (2.7) we conclude that as n →∞

inf
t≤T

P

(
|ξ1

t |
n

> ρ− 2δ

)
= P

(
|ξ1

T |
n

> ρ− 2δ

)
≥ P

(
ξ1
T ⊇ {x : Yx = 1},

n∑
x=1

Yx ≥ n(ρ− 2δ)

)
→ 1.

This completes the proof of Theorem 1.

3 Proof of Theorem 3

Recall the definition of m(A, K) given in (1.4). Let R = log n/ log r, a = (1/4− δ) and let ρ
be the branching process survival probability defined in (1.1).

Lemma 3.1. If qr > 1 and δ0 is small enough, then for any 0 < δ < δ0 there are constants
C(δ) > 0, B(δ) = (1/4− 2δ) log(qr − δ)/ log r and a stopping time T satisfying

P
(
T < 2 exp

(
C(δ)nB(δ)

))
≤ 3 exp

(
−C(δ)nB(δ)

)
such that for any A with m(A, 2aR) ≥ (ρ− 2δ)nB(δ),

∣∣∣ξ̂A
T

∣∣∣ ≥ (ρ− 2δ)nB(δ).
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Proof. Let mt = m(ξ̂A
t , 2aR). We define the stopping times σi and τi as follows. σ0 = 0, and

for i ≥ 0

τi+1 = min{t > σi : mt < (ρ− 2δ)nB},
σi+1 = min{t > τi+1 : mt ≥ (ρ− 2δ)nB}.

First we estimate the probability of the event Ei = {m(ξ̂A
τi
, 2aR−2) ≥ (q−δ)(ρ−2δ)nB}.

Since τi > σi for i ≥ 1, mτi−1 ≥ (ρ − 2δ)nB, and hence there is a set S of size (ρ − 2δ)nB

such that any two vertices in S are 2aR apart. Using the binomial large deviation estimate
(2.6), at least (q − δ)(ρ − 2δ)nB vertices of S will give birth at time τi with probability
≥ 1 − exp(−γ((q − δ)/q)q(ρ − 2δ)nB). If we choose one offspring from the vertices of S
which give birth, then we have at least (q− δ)(ρ− 2δ)nB vertices at time τi so that they are
separated by distance 2aR− 2 from each other. So

P (Ec
i ) ≤ exp(−c1(δ)n

B), (3.1)

where c1(δ) = γ((q − δ)/q)q(ρ− 2δ).
On the event Ei, ξ̂A

τi
⊇ ζi where |ζi| ≥ (q− δ)(ρ− 2δ)nB and all vertices of ζi are distance

2aR− 2 apart from each other.
Let Ax be the event that the cluster starting at x in Ĝn does not intersect itself before

reaching size n2a.On the event Ax, as shown in Lemma 2.2, |ξ̂{x}t | = Zx
t for t ≤ 2aR, where

Zx
t is a supercritical branching process with mean offspring number qr. Let Bx be the event

of survival for Zx
t , P (Bx) = ρ > 0 and Fx = ∩aR−3

t=δR−2{Zx
t+1 ≥ (qr − δ)Zx

t }. Using the error
probability of (2.4)

P (F c
x |Bx) ≤

aR−3∑
t=δR−2

e−c′(δ)t ≤ Cδe
−c′(δ)δ log n/(log r) = Cδn

−c′(δ)δ/(log r).

On the event Bx ∩ Fx Zx
aR−2 ≥ (qr − δ)(a−δ)R = n(a−δ) log(qr−δ)/ log r = nB. Hence for Gx =

Ax ∩ {|ξ̂{x}aR−2| ≥ nB},

P (Gx) ≥ P (Ax ∩Bx ∩ Fx) ≥ P (Bx)− P (Ac
x)− P (F c

x |Bx) ≥ P (Bx)− δ = ρ− δ (3.2)

for large enough n, as P (Ax) ≥ 1− n−4δ using Lemma 2.1.
Since each vertex of ζi is 2aR − 2 apart from the other vertices of ζi, ξ̂ζi

t is a disjoint

union of ξ̂
{x}
t over x ∈ ζi for t ≤ aR− 2. Let Hi be the event that there is at least one x ∈ ζi

for which Gx occurs. Then

P (Hc
i |Ei) ≤ (1− ρ + δ)|ζi| ≤ (1− ρ + δ)(q−δ)(ρ−2δ)nB

= exp
(
−c2(δ)n

B
)
, (3.3)

where c2(δ) = (q − δ)(ρ− 2δ) log(1/(1− ρ + δ)).

If Hi∩Ei occurs, choose any vertex wi ∈ ζi such that Gwi
occurs and let Si = ξ̂

{wi}
aR−2 = Si.

By the choice of wi, |Si| ≥ nB and the clusters of size na starting from any two vertices of
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Si do not intersect. So ξ̂Si
t is a disjoint union of ξ̂

{x}
t over x ∈ Si for t ≤ aR. Using (3.2)

P (ξ̂
{x}
aR 6= ∅) ≥ ρ − δ. We choose one vertex from ξ̂

{x}
aR for each x ∈ Si for which ξ̂

{x}
aR 6= ∅ to

have a set Wi ⊆ ξ̂Si
aR.

Let Ji be the event that there are at least (ρ − 2δ)nB vertices in Si such that ξ̂
{x}
aR 6= ∅.

Using our binomial large deviation estimate (2.6)

P (J c
i ) ≤ exp

(
−γ

(
ρ− 2δ

ρ− δ

)
(ρ− δ)nB

)
= exp

(
−c3(δ)n

B
)
. (3.4)

So on the intersection Ei ∩Hi ∩ Ji there is a set Wi ⊂ ξ̂
{wi}
2aR−2 with |Wi| ≥ (ρ − 2δ)nB, and

each vertex of Wi is separated by a distance 2aR from other vertices of Wi. Hence using
monotonicity of the threshold contact process σi ≤ τi + 2aR on this intersection. So

P (σi > τi + 2aR) ≤ P (Ec
i ) + P (Hc

i |Ei) + P (J c
i ) ≤ 3 exp(−2C(δ)nB),

where C(δ) = min{c1(δ), c2(δ), c3(δ)}/2. Let K = inf{i ≥ 1 : σi > τi + 2aR}. Then

P (K > exp(C(δ)nB)) ≥
[
1− 3 exp(−2C(δ)nB)

]exp(C(δ)nB)

≥ 1− 3 exp(−C(δ)nB).

Since σi > τi > σi−1, σK−1 ≥ 2(K − 1). As |ξ̂A
σK−1

| ≥ (ρ− 2δ)nB, we get our result if we take
T = σK−1.

As in the proof of Theorem 1, survival of the dual process gives persistence of the threshold
contact process.

Proof of Theorem 3. Let 0 < δ < δ0, ρ, a = (1/4− δ) and B = (1/4− 2δ) log(qr − δ)/ log r
be the constants from the previous proof. Define the random variables Yx, 1 ≤ x ≤ n, as
Yx = 1 if the dual process ξ̂

{x}
t starting at x satisfies m(ξ̂

{x}
2aR−2, 2aR) ≥ (ρ−2δ)nB and Yx = 0

otherwise.
Consider the event Gx as defined in Lemma 3.1. For large n, P (Gx) ≥ P (Bx)−δ = ρ−δ.

If Gx occurs, then |ξ̂{x}aR−2| ≥ nB and clusters starting from any two vertices of ξ̂
{x}
aR do not

intersect until their size become na. Using arguments that led to (3.4)

P (m(ξ̂
{x}
2aR−2, 2aR) < (ρ− 2δ)nB|Gx) ≤ exp(−cnB),

which implies that if n is large P (Yx = 1) ≥ ρ− 2δ.
If we grow the cluster starting from x using a breadth-first search, then all the vertices

at distance ≤ 2aR from x are within the cluster of size n2a. So if Ax,z be the event that the
clusters of size n2a starting from x and z do not intersect, then

P (Yx = 1, Yz = 1)− P (Yx = 1)P (Yz = 1) ≤ P (Ac
x,z) ≤ n−(1−4a) = n−4δ
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by Lemma 2.1. Using the bound on the covariances,

var

(
n∑

x=1

Yx

)
≤ n + n(n− 1)n−4δ,

and Chebyshev’s inequality gives that as n →∞

P

(∣∣∣∣∣
n∑

x=1

(Yx − EYx)

∣∣∣∣∣ ≥ nδ

)
≤ n + n(n− 1)n−4δ

n2δ2
→ 0.

Since EYx ≥ ρ− 2δ, this implies

lim
n→∞

P

(
n∑

x=1

Yx ≥ n(ρ− 3δ)

)
= 1. (3.5)

If Yx = 1, m(ξ̂
{x}
T1

, 2aR) ≥ (ρ − 2δ)nB, for T1 = 2aR − 2. Using Lemma 3.1, after an
additional T2 ≥ 2 exp(C(δ)nB) units of time, the dual process contains at least (ρ − 2δ)nB

many particles with probability≥ 1−3 exp(−C(δ)nB). Using duality of the threshold contact
process, for any subset S of vertices

P (ξ1
T1+T2

⊃ S) = P
(
ξ̂
{x}
T1+T2

6= ∅ ∀x ∈ S
)

≥ P
(
|ξ̂{x}T1+T2

| ≥ (ρ− 2δ)nB ∀x ∈ S
)

≥ P (Yx = 1 ∀x ∈ S) · (1− 3|S| exp(−C(δ)nB))

≥ P (Yx = 1 ∀x ∈ S) · (1− exp(−nB/2)),

since |S| ≤ n. Hence for T = T1 + T2 using the attractiveness property of the threshold
contact process, and combining the last calculation with (3.5) we conclude that as n →∞

inf
t≤T

P

(
|ξ1

t |
n

> ρ− 3δ

)
= P

(
|ξ1

T |
n

> ρ− 3δ

)
≥ P

(
ξ1
T ⊇ {x : Yx = 1},

n∑
x=1

Yx ≥ n(ρ− 3δ)

)
→ 1,

which completes the proof of Theorem 3.
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